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ABSTRACT. We identify errors in Leighton’s Notes on Better Master
Theorems for Divide-and-Conquer Recurrences and provide
counterexamples. Convenient replacements are provided for the main
result.

We define admissibility of recurrences and prove that a solution T of an
admissible recurrence satisfies a strong form of the Akra-Bazzi formula if
and only if T is locally ©(1), a property implied by bounded depth of
recursion on bounded sets, which in turn is implied by satisfaction of a
ratio condition on the dependencies of the recurrence. We show as a
consequence that if R is a divide-and-conquer recurrence with low noise
whose recursion set contains only integers and whose incremental cost
satisfies our generalization of Leighton’s polynomial-growth condition,
then the solution of R satisfies the same strong Akra-Bazzi condition.
Generalizations of the Master Theorem and an application to
nonhomogeneous linear difference equations are also provided along with
some results about asymptotic solution insensitivity to the base case and
incremental cost of a recurrence.
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| have to see something to the point where
I have surrounded it and ... totally understood it ...

— DONALD KNUTH

You always hit obstacles. You get past them because
you just keep thinking about it until it gives up.

— JACOB LURIE



Preface

These notes began life in 2010 as an email never sent to Tom Leighton. The message
was a sketchy list of errata for his very interesting paper about the Akra-Bazzi formula.
However, [ was unable to resist providing a comprehensive explanation and resolution of
the issues along with extensive discussion of related topics. Work proceeded as an
intermittent back-burner project with many delays.

The intended audience for this lengthy exposition includes anyone interested in solutions
of recurrences. A high level of detail is provided. The reader should have Leighton’s
paper on hand for reference while reading some parts of these notes.

An overview of the main points is provided in the Introduction. 1 recommend at least
browsing that section.

Counterexamples to Theorem 2 of the aforementioned paper are exhibited, and errors in
the argument are identified. Convenient replacements for that proposition are provided.

Much of the current document is applicable to admissible recurrences, which are defined
herein. The key result is that a solution of an admissible recurrence satisfies a strong
version of the Akra-Bazzi formula if and only if the solution is locally ®(1). Both of
these properties are consequences of the bounded depth condition, which is implied by
the ratio condition.

The most interesting consequence is Theorem 21.2: If R is a divide-and-conquer
recurrence with low noise whose recursion set contains only integers and whose
incremental cost has polynomial growth, then its solution satisfies the strong Akra-Bazzi
condition relative to R and each tame extension of the incremental cost of R.
Furthermore, there exist such extensions.

The well-known algorithms book by Cormen, Leiserson, Rivest, and Stein contains a
proposition called the Master Theorem. 1 provide generalizations of the Master Theorem

in Section 33.

Counterexamples to Leighton’s sufficiency criterion for satisfaction of his polynomial-
growth condition are provided. An adaptation of that condition to more general domains

v



Preface

is extensively analyzed. Roughly speaking, a polynomial-growth function is a non-
negative real-valued function on a set of positive real numbers such that the function has
bounded dynamic range on subsets of the domain with uniformly bounded dynamic
range. I regret my perpetuation of the terminology polynomial growth for the
phenomenon in question. The relationship to polynomials is far too loose. I should have
used some other terminology such as uniformly constrained dynamic range.

The main results are stated in Sections 20 and 21. Their proofs are largely contained in
Sections 20-28, although there some dependencies on earlier sections. See Section 35
for applications to nonhomogeneous linear difference equations with constant
coefficients. Section 29 establishes solution insensitivity to certain changes in the base
case and incremental cost of a divide-and-conquer recurrence satisfying mild conditions.

This document suffers from an uneven style partly because it was written sporadically
over a long period of time. I hope this causes no confusion for the reader.

There is some redundancy in this work, although not as much as suggested by the great
length. In particular, most of the information in the Introduction is repeated in later
sections.

I am guilty of a major faux pas: This document was not typeset with TeX. Furthermore,
the uppercase letters I and J are too similar as are the symbols [ ],| |,[ l,and| |.
The reader has my apologies.

Errata and other comments are welcome at the email address on the title page. This
document will be updated as appropriate. The latest version can be found at the internet

address specified on the copyright page. Let’s get it right!

Seattle, Port Townsend, and Bellingham NEVILLE CAMPBELL
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0. Introduction

This work is inspired by Tom Leighton’s Notes on Better Master Theorems for Divide-
and-Conquer Recurrences [Le], which starts by saying

Divide-and-conquer recurrences are ubiquitous in the analysis of
algorithms. Many methods are known for solving recurrences such as

1, ifn=1
T = {ZT([n/Z]) +oM),  ifn>1,

but perhaps the most widely taught approach is the Master Method that is
described in the seminal algorithms text by Cormen, Leiserson and Rivest
[the first edition, which was before Stein became a coauthor].

The Master Method is fairly powerful and results in a closed form solution
for divide-and-conquer recurrences with a special (but commonly-
occurring) form. Recently Akra and Bazzi [AB] discovered a far more
general solution to divide-and-conquer recurrences....

In these notes, we give a simple inductive proof of the Akra-Bazzi result
... We also show that the Akra-Bazzi result holds for a more general class
of recurrences that commonly arise in practice and that are often
considered to be difficult to solve.

(The actual citations in [Le] differ superficially from those shown in the quotation above,
but they refer to the same sources. Due to limitations of the software used to create this
document, the punctuation and formatting of the recurrence above also differ from [Le].)

The description in [CLRS] of the Master Method is adapted from work of Jon Bentley,
Dorothea Haken, and James Saxe [BHS] and is encapsulated by the Master Theorem in
[CLRS]. A couple of Leighton’s conclusions are included in [CLRS].

Akra-Bazzi Theorem. The main result in [AB] is applicable to recurrences of the form
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k

T() = ) aT (b)) + g(n)

i=1

for each positive integer n where T (0) > 0 and there are various assumptions about a;,
b;, and g. They conclude that

T(n) =0(n? (1 + jn‘zgg du)

ni

for sufficiently large n, where p is determined by

(libg9 =1.

-

=1

Akra and Bazzi use slightly different notation. For example, their recurrence defines a
sequence Uy, Uy, Uy, ... rather than a function T, and their b; is the reciprocal of our b;.
Unlike the depiction above, they organize the right side of their formula as a sum of two
terms.

They also state a result analogous to the Master Theorem under the assumptions of their
theorem. Their assumptions differ from the hypothesis of the Master Theorem.

Leighton’s Theorem 1. Leighton refers to his Theorem 1 as “the Akra-Bazzi result” and
gives a simpler proof than the original argument of Akra and Bazzi. Theorem 1 is
applicable to recurrences of the form

0(1), forl <x<x,
k

TG = Z a;T(b;x) + g(x), for x > x,

i=1

that are defined on the real interval [1, o0) and satisfy a list of assumptions including
a; > 0and 0 < b; < 1 for each index i. The function g must be non-negative and
satisfy a certain polynomial-growth condition defined by Leighton. The proposition says

T(x)=0 (xp (1 + jxigﬁ du))

where p is determined by

as in [AB].
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Leighton’s Theorem 1 implies the Akra-Bazzi theorem provided the solution of the
recurrence of Theorem 1 is unaffected up to @-equivalence when b;x is replaced by | b; x|
in the recurrence. This common, highly plausible assumption is true in this instance, as
will be evident from our replacements for Theorem 2 of [Le].

In this document, the term Akra-Bazzi formula usually refers to the formula in Leighton’s
Theorem 1, which differs from Akra and Bazzi’s version in two respects: the domain is
[1, o) and the lower limit of integration is always 1.

Leighton’s Theorem 2. The most interesting proposition in [Le] is Theorem 2, which is
the aforementioned extension of the Akra-Bazzi theorem to “a more general class of
recurrences” and is applicable to many recurrences of the form

0(1), forl <x <x,
k

Z a;T(bix + hy(x)) + g(x), for x > x,.

i=1

T(x) =

Theorem 2 assumes there exists € > 0 such that
X
|h; ()] < Togi*e x

for all x = x; and each index i and has a complicated list of other conditions, including
all the assumptions of Theorem 1. The proposition asserts satisfaction of Leighton’s
version of the Akra-Bazzi formula.

Unfortunately, [Le] contains major and minor errors along with a few oddities. Most
significantly, Theorem 2 is false. In this document, we identify the issues and describe
suitable resolutions for them. In particular, we obtain convenient replacements for
Leighton’s Theorem 2.

A finitely recursive counterexample to Theorem 2 is constructed in Section 15. The
recurrence’s unique solution does not conform to the Akra-Bazzi formula.

Infinitely recursive counterexamples to Theorem 2. Leighton’s argument for his
Theorem 2 implicitly misidentifies some infinitely recursive recurrences as finitely
recursive. In Section 13, we exhibit an infinite family of recurrences partially
parameterized by x, € [686,10000]. They satisfy the hypothesis of Theorem 2 but are
infinitely recursive.

Each recurrence in the family has a real-valued solution that maps each non-empty open
subset of (x,, ) surjectively onto the set of all real numbers. In particular, each such
solution is unbounded above and below on each such open set and has a graph that is
dense in the open half plane define by the inequality x > x,. Each recurrence in the
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family has infinitely many such solutions, but also has a solution that is (1) as predicted
by Leighton’s Theorem 2.

Are all solutions real-valued? Like many authors, Leighton does not define solutions of
recurrences to be real-valued. He simply describes equations that must be satisfied. All
recurrences satisfying the hypothesis of his Theorem 1 are finitely recursive and have
unique solutions, which are real-valued. Finitely recursive recurrences satistying the
hypothesis of Theorem 2 also have unique solutions, which are real-valued. However,
each of our infinitely recursive counterexamples to Theorem 2 has among its infinitely
many solutions some that are not finite. For example, there are solutions T, ., and T_,
that satisfy T, . (x) = 400 and T_,(x) = —oo for all x > x,.

With obvious modifications to the arguments in Section 13, it is also possible to show
that each of our infinitely recursive counterexamples to Theorem 2 has an infinite number
of complex solutions that map each open subset of (x,, ©) surjectively onto the complex
numbers. In particular, all values of such solutions are finite but some are non-real.

Henceforth, any reference to a “solution” of a recurrence satistfying the hypothesis of
Theorem 2 means a “real-valued solution”.

Invalid test for Leighton’s polynomial-growth condition. [Le] contains the remark “If
|g' ()| is upper bounded by a polynomial in x, then g(x) satisfies the polynomial-
growth condition [as defined by Leighton].” The assertion is false, but it is repeated in
[CLRS]. We exhibit four classes of differentiable counterexamples in Section 3, where
the converse of the remark is also shown to be false for differentiable functions. We also
note that in spite of Leighton’s remark, differentiability of g is mentioned nowhere in
[Le].

Generalization of Leighton’s polynomial-growth condition. Among other
requirements, functions satisfying Leighton’s polynomial-growth condition are non-
negative real-valued functions with domains containing certain positive, unbounded
intervals. (Non-negativity is not mentioned in Leighton’s statement of his condition;
however, the condition is stated in the context of a particular class of non-negative
functions.) In Section 2, we generalize Leighton’s polynomial-growth condition to
include all sets of positive real numbers as function domains. Our polynomial-growth
functions are also non-negative (indeed, Lemma 2.7 says they are either positive or
identically zero). Corollary 2.17 says the two polynomial-growth conditions are
equivalent in the context of Leighton’s propositions.

Convenient methods for recognizing many functions that satisfy our polynomial-growth
condition are provided in Section 4. Subject to very minor restrictions, power functions,
non-negative constant functions, logarithms, floors, and ceilings have polynomial growth.
Sums, products, quotients (with positive denominators), and compositions of polynomial-
growth functions have polynomial growth. Modest perturbations of polynomial-growth
functions yield polynomial-growth functions as do certain generalized polynomial
functions that satisfy a positivity condition.
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Extension of integer recurrences to real intervals. Recurrences arising from the
analysis of algorithms are typically defined on a set of integers (usually the positive
integers or non-negative integers). Many recurrences defined on sets of integers have
natural extensions to recurrences defined on a real interval. For example, the recurrence

s _ 1, forn=1
(n) = {S([n/ZJ) +S(n/2]) +n, for each integer n > 1.

defined on the positive integers has the obvious extension

T(x) = { 1, forx € [1,2)

S AT(x/2D) + T([x/2]) + x, for x € [2, )
to the real interval [1, ). Each of these recurrences is finitely recursive and has a unique
solution. Furthermore, S is the restriction of T to the positive integers.

Leighton’s Theorem 2 is a statement about a class of recurrences defined on the real
interval [1, ). Potential applicability to recurrences on the positive integers is via
extensions of such recurrences to [1, ).

However, the hypothesis of Theorem 2 is applicable to a wider class of recurrences than
those obtained by extension from sets of integers, i.¢., there is no requirement that

b;n + h;(n) is an integer for each integer n > x,. Furthermore, the hypothesis very
loosely couples behavior of b;x + h;(x) outside the integers to behavior on the integers.
Therefore, we should not expect such recurrences to behave like integer recurrences. The
differences are related to some of the many issues with Theorem 2.

Our definitions of a divide-and-conquer recurrence and a mock divide-and-conquer
recurrence. A semi-divide-and-conquer recurrence is of the form

(), for x € D\I
k
e = > ar(bx+ b)) + g0, forxel.

i=1

The domain, D, of the recurrence can be any set of real numbers with a positive element.
By definition, a solution T of the recurrence must be a real-valued function on D. The
recursion set, I, is a non-empty upper subset of D with a positive lower bound. Here k is
any positive integer. For each index i, the coefficients a; and b; are real numbers with

a; > 0and 0 < b; < 1. The base case, f, is a real-valued function on D\I with a
positive lower bound and a finite upper bound. The incremental cost, g, is a non-
negative real-valued function on I. Each noise term h; is a real-valued function on I, and
b;x + h;(x) € D for all x € I and each index i. The functions x — b;x + h;(x) are the
dependencies of the recurrence. The Akra-Bazzi exponent of the recurrence is the unique
real number p for which
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aibg9 =1.

-

=1

(See Lemma 11.1.) The recurrence is proper if b;x + h;(x) < x for all x € I and each
index i. A divide-and-conquer recurrence is a proper semi-divide-and-conquer
recurrence. A mock divide-and-conquer recurrence is an improper semi-divide-and-
conquer recurrence.

A semi-divide-and-conquer recurrence is defined more formally in Section 7 as a
(3k + 4)-tuple. The formal definition avoids ambiguity in the choice of b; and h;.

Relationship of our definitions to Theorem 2. A recurrence satisfying the hypothesis
of Theorem 2 also satisfies our definition of a semi-divide-and-conquer recurrence with
domain [1, ), recursion set I = (x,, ), incremental cost g|;, and noise terms
hyl; -, hy|; if and only if

b;x + h;(x) € [1,0)

for all x > x, and each index i. (The domains of g and hq, ..., hj, properly contain [.) It
is a divide-and-conquer recurrence if and only if

bl-x + hi(X) € [1,.X')
for each such x and i.

As evident from the argument in [Le], the hypothesis of Theorem 2 is intended to imply
satisfaction of our definition of a divide-and-conquer recurrence. However, we shall see
that this implication is false.

Some mock divide-and-conquer recurrences satisfy the hypothesis of Theorem 2.
Members of the aforementioned family of infinitely recursive counterexamples to
Theorem 2 are divide-and-conquer recurrences if and only if x, = 10000.

Each recurrences in the family with x, # 10000, i.e., x, < 10000 is a mock divide-and-
conquer recurrence with infinitely many x > x, satisfying by x + h;y(x) > x, i.e., T(x)
depends on T(y) for some y > x. Furthermore, 10000 is a fixed point of the sole
dependency, i.e., b; - 10000 + h,(10000) = 10000.

Our finitely recursive counterexample to Theorem 2 is a divide-and-conquer
recurrence. We cannot fix Theorem 2 by simply requiring finite recursion and
satisfaction of our definition of a divide-and-conquer recurrence.

Ill posed recurrences. There exist ill posed recurrences (we use the term loosely) that
satisfy the hypothesis of Theorem 2 but are neither divide-and-conquer recurrences nor
mock divide-and-conquer recurrences. They have the property that b;x + h;(x) < 1 for
some x > x, and some index i, i.e., T(x) depends on the value of T (y) for some y not in
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the domain of T. Such a recurrence has no solution, let alone one satisfying the Akra-
Bazzi formula. See Section 19 for an example.

[ll-posed recurrences satisfying the hypothesis of Leighton’s Theorem 2 can be converted
to semi-divide-and-conquer recurrences by extending the domain of the base case to
include some values less than 1 while leaving x, unchanged. However, issues with the
base case of Leighton’s inductive argument are exacerbated if we extend the hypothesis
of Theorem 2 to include such recurrences. See Section 16.

Since our previously mentioned counterexamples to Theorem 2 are divide-and-conquer
recurrences or mock divide-and-conquer recurrences, Theorem 2 cannot be fixed by
merely avoiding ill posed recurrences.

Inductive proof of Theorem 2 uses partition of [1, o) that does not necessarily have
desired relationship to recurrence. Leighton’s argument uses a partition of the
recurrence’s domain, [1, ), into subintervals

Iy = [1,x0],11 = (x0,X0 + 1]:12 = (xo +1,x9 + 2], ...

and proceeds by induction on the index of the interval. There is an implicit assertion that
n-1
bix + hi(.X') S UI]
j=0

for each positive integer n, all x € I,,, and all i € {1, ..., k}. Leighton correctly
demonstrates a similar assertion in the context of his Theorem 1. However, the assertion
is false in the context of Theorem 2 and is violated by all the aforementioned
counterexamples to that proposition. This is a critical error, which exemplifies the
differences between integer recurrences and real recurrences.

Proof of Theorem 2 states lower and upper bounds on T(x) for all x > x,. The
lower bound is of the form
1
1+——|y(x

and the upper bound is of the form

Here y and z are certain real-valued functions on [1, c0) that have positive lower bounds
and finite upper bounds on each bounded subset of their domain.

Mismatch between base case of induction and conclusion of inductive argument.
Although the proof of Theorem 2 states the goal of establishing the previously mentioned
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bounds for T on (x,, ), the base case of the induction is identified as [1, x,], the domain
of the base case of the recurrence, which is disjoint from (x,, ). Indeed, the argument
for the asserted bounds of T on (x,, ) depends on validity of the bounds on at least part
of [1, xO] .

Base case of induction involves division by zero when x = 1. The asserted bounds for
T (x) involve division by zero when x = 1 because logg/ 21 = 0. In context, the only
plausible interpretations are that 1/ (loge/ 2 1) is either undefined or represents +oo,
which corresponds to the obviously false chain of inequalities

+00 < T(1) < —o0.

£/2 1) represents —oo, which corresponds to

An implausible interpretation is that 1/(log
the trivial chain of inequalities

—00 < T(1) < +oo.

Inductive hypothesis also unsatisfied on part of (1, xy]. The hypothesis of Theorem 2
implies the restriction of T to [1, x,] has a positive lower bound and a finite upper bound.
However, the inductive hypothesis’s lower bound for T approaches o as x approaches 1
from above, while the inductive hypothesis’s upper bound for T approaches —oo. Also,
the asserted upper bound is non-positive for all x € (1, e] while the asserted lower bound
is positive for each such x. Behavior near e is also problematic. See Section 16.

Partial resolution of base case of induction. The problems with the base case of
Leighton’s induction can be avoided for some, but not all, semi-divide-and-conquer
recurrences satisfying the hypothesis of Theorem 2 by restricting the base case of the
induction to a suitable proper subset of (e, x,]. As explained in Section 16, this
mitigation is possible if and only if

xigleo (1isrilsfk(bix + h; (x))) > e.

Specified bounds are sometimes unsatisfied even when conclusion of Theorem 2 is
correct. Sections 17 and 18 give examples of finitely recursive divide-and-conquer
recurrences that satisfy the hypothesis and conclusion of Theorem 2 but do not satisfy the
bounds asserted by the argument in [Le]. A suitably restricted base case of the induction
satisfies the inductive hypothesis, but the inductive step fails.

Other invalid inequalities when p < 0. The inductive step of the proof of Theorem 2
implicitly asserts a pair of inequalities that are mutually incompatible when p < 0 (see
Section 24). This is resolved in our analogous Lemma 20.8 by replacement of p by [p| in
conditions 4(a) and 4(b) of [Le] (see the technical condition in Section 20) and
replacement of the incompatible inequalities with alternatives (see Section 25). Mere
replacement of p by |p| without other changes is inadequate because the finitely
recursive counterexample in Section 15 to Theorem 2 has p = 0, i.e., |p| = p. The
replacement of p by |p| is also useful in the proof of Lemma 20.9.
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Lemma 2 of [Le] fails for some divide-and-conquer recurrences. The finitely
recursive divide-and-conquer recurrence in Section 15 that is a counterexample to
Theorem 2 is also a counterexample to Lemma 2. Our proper, infinitely recursive
counterexample to Theorem 2 with x, = 10000 is also a counterexample to Lemma 2.
See Section 19 for details.

Lemma 2 also fails for each mock divide-and-conquer recurrence that satisfies the
hypothesis of Theorem 2 and has positive g. Under the same hypothesis as Theorem 2,
the lemma implies (among other consequences) that

X

u

j g;g du>0
bix+hi(x) u

for all x = 1 and each index i when g is a positive function. However, for each mock
divide-and-conquer recurrence that satisfies the hypothesis of Theorem 2, there exists

X > X, such that x < b;x + h;(x), so the oriented integral is non-positive in violation of
Lemma 2. The counterexamples in Section 13 to Theorem 2 have positive g; those
recurrences with x, < 10000 are improper. See Section 19.

Replacement for Lemma 2. An obvious replacement for Lemma 2 is provided in
Section 22 and is applicable to divide-and-conquer recurrences that satisty the strong
ratio condition and have an incremental cost with a fame extension.

Ratio and Strong Ratio Conditions. A semi-divide-and-conquer recurrence satisfies
the ratio condition if there exists f < 1 such that r(x) < Bx for each dependency r and
each x in the recursion set. (In particular, the recurrence is proper, i.e., is a divide-and-
conquer recurrence) A divide-and-conquer recurrence satisfies the strong ratio condition
if it satisfies the ratio condition and there exists @ > 0 such that ax < r(x) for each
dependency r and each x in the recursion set. See Section 9 for more information.

Tame Functions. We define a tame function to be a polynomial-growth, locally
Riemann integrable, real-valued function on a non-empty positive interval. Tame
functions inherit non-negativity from our definition of polynomial growth. (Our tame
functions are unrelated to functions called “tame” in the study of Fréchet spaces.)

Missing integrability conditions. Although all four propositions in [Le] have
conclusions involving integrals with g(u)/uP*? as the integrand, the paper makes no
mention of any integrability conditions or any other conditions (such as continuity of g)
that imply integrability of the integrand. We note that all integrals appearing in our
counterexamples to Leighton’s Theorem 2 have Riemann integrable integrands, so
Theorem 2 cannot be fixed by addition of an integrability condition.

Theorem 2 leaves domains of g and hq, ..., h; unspecified but has conditions
describing their behavior on sets properly containing their natural domains. The
form of the recurrence implicitly requires the domains to contain (x,, ). Furthermore,
solutions of the recurrence are unaffected by behavior of g or hy, ..., hj, outside this
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interval. However, the Akra-Bazzi formula, Leighton’s polynomial-growth condition,
and Lemma 2 implicitly require a larger domain of g (as do Lemma 1 and Theorem 1).
Condition (3) of Theorem 2 also implies a larger domain of g whenever

b;x + h;(x) < min(x, x,)

for some x > 1 and some index i. Conditions (2) and (3) implicitly require a larger
domain for hy, ..., hy.

Leighton’s second example is wrong and illustrates some oddities. The second
example in [Le] incorrectly gives ©(x?/loglog x) as the solution to a certain family of
recurrences. If we assume an appropriate domain and base case, the correct solution is
O(x?loglog x) subject to a caveat about asymptotic incremental costs, which we discuss
later.

The example also illustrates the awkwardness of Leighton’s implicit domain of g and the
choice of 1 as the lower limit of integration. His Theorems 1 and 2 are inapplicable to
recurrences that obviously have the same solutions as members of the family but are
disqualified from membership in the family only by these unnecessary restrictions. An
artificial definition of the restriction of g to [1/2, x,] is required for g to be non-
negative, defined at 1, and satisfy Leighton’s polynomial-growth condition, while
avoiding a divergent improper integral. See Section 6 for more information.

Admissible recurrences. Section 20 provides replacements for Theorem 2 that are
applicable to admissible recurrences. An admissible recurrence is a semi-divide-and-
conquer recurrence with low noise whose incremental cost has a tame extension.

Low noise. We define a semi-divide-and-conquer recurrence to have low noise if either
the recursion set is bounded or for each noise term h there exists ¢ > 1 such that

Ih()l =0 (log‘-‘ x)'

This definition of low noise is weaker than Leighton’s noise bound. Our constraint is
only specified in asymptotic form, whereas his constraint is satisfied on the specific
interval [x,, ). Furthermore, his exponent is 1 + & for some ¢ that is positive and
satisfies four additional conditions. Our main replacements for Theorem 2 place no
additional restrictions on c.

Floors, ceilings, and noise. Some divide-and-conquer recurrences have almost linear
dependencies of the form x — |bx] or x = [bx] where 0 < b < 1. For example,
complexity of merge sort is described by a recurrence of the form

T(n) = { 0(1), forn=1
" AT(n/2) + T(n/2]) + g(n), for each integer n > 1.

10
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Observe that

bx + (|bx] — bx)
and

bx + ([bx] — bx)

are representations of such dependencies in the form dictated by our definition of a
divide-and-conquer recurrence. The corresponding noise terms x — |bx| — bx and
x + [bx] — bx, respectively, are consistent with low noise.

Akra-Bazzi conditions. Let I be the recursion set of a semi-divide-and-conquer
recurrence and suppose g is a tame extension of the recurrence’s incremental cost, so the
domain of g 1s a non-empty, positive interval containing I. The Akra-Bazzi estimate for
the recurrence relative to g is the real-valued function A on I defined by

AQx) = 7 (1 + jxifﬁ du>,

Xo

where x, = infl and p is the Akra-Bazzi exponent. The quantity x, is positive by
definition of a semi-divide-and-conquer recurrence, so the denominator of the integrand
is positive; in particular, the denominator is non-zero. If x, is not in the domain of g, the
integral above is improper; it is convergent by Corollary 10.3 and Lemma 10.5. The
integrand is non-negative because tame functions are non-negative. Therefore, the
function A is positive. Furthermore, Lemma 20.2 says A is locally 0(1).

A solution T of the recurrence satisfies the strong Akra-Bazzi condition (relative to the
recurrence and g) if there exist positive real numbers 1, and 4, such that

MAMX) <T(x) < 1,A(x)

for all x in I. A solution T satisfies the weak Akra-Bazzi condition (relative to the
recurrence and g) if I is unbounded and

T(x) = 0(A(x)).

The weak Akra-Bazzi condition is similar to the Akra-Bazzi formula that appears in
Leighton’s propositions, but the integrand is more loosely related to the incremental cost
and the lower limit of integration is different. As explained in Section 20, there is
considerable flexibility in the choice of the lower limit of integration.

We are more interested in the strong Akra-Bazzi condition than the weak Akra-Bazzi

condition. Of course, the strong Akra-Bazzi condition implies the weak Akra-Bazzi
condition when the recursion set is unbounded.

11
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Equivalence of strong Akra-Bazzi condition to solution of admissible recurrence
being locally ®(1). Theorem 20.11, says the following three conditions are equivalent
for a solution T of an admissible recurrence:

(1) T is locally (1), i.e., each restriction of T to a bounded set has a positive lower
bound and finite upper bound.

(2) T satisfies the strong Akra-Bazzi condition relative to the recurrence and some
tame extension of the incremental cost.

(3) T satisfies the strong Akra-Bazzi condition relative to the recurrence and each
tame extension of the incremental cost.

By definition, the incremental cost of an admissible recurrence has at least one tame
extension, so condition (3) of Theorem 20.11 implies condition (2), which implies
condition (1) since the Akra-Bazzi estimate is locally ©(1). The nontrivial part of
Theorem 20.11 is the assertion that (1) implies (3).

Some finitely recursive, admissible divide-and-conquer recurrences satisfy the weak
AKra-Bazzi condition but have solutions that are not locally ®(1). Examples are
exhibited in Sections 17 and 18.

Akra-Bazzi conditions are properties of specific solutions, not recurrences. Section
20 describes an example (a member of the family of counterexamples in Section 13 to
Theorem 2) of an infinitely recursive, proper, admissible recurrence with a positive
constant solution that satisfies the strong and weak Akra-Bazzi conditions. However, the
recurrence has infinitely many other solutions that satisfy neither the strong nor weak
Akra-Bazzi conditions and are not ©(1) on any non-empty open subset of the recursion
set, which is an unbounded interval.

Bounded depth condition. Recursion is insufficiently constrained in the hypothesis of
Theorem 2 and Lemma 2 even if we assume finite recursion and satisfaction of our
definition of a divide-and-conquer recurrence. A semi-divide-and-conquer recurrence
satisfies the bounded depth condition if the depth of recursion is bounded on bounded
sets (see Sections 8 and 9). The existence of any partition of the recurrence’s domain
with properties similar to those implicitly claimed by Leighton’s argument for Theorem 2
requires satisfaction of our weaker bounded depth condition. Our counterexamples in
Section 13 and 15 to Leighton’s Theorem 2 violate the bounded depth condition, so there
is no partition with the necessary properties. In particular, the inductive step of the proof
fails for those counterexamples. See Section 19.

Each admissible recurrence that satisfies the bounded depth condition has a unique
solution, which satisfies the strong Akra-Bazzi condition. Lemma 9.10 implies the
recurrence has a unique solution, which is locally ©(1). We conclude from Theorem
20.11 that the solution satisfies the strong Akra-Bazzi condition relative to the recurrence
and each tame extension of the recurrence’s incremental cost (Corollary 20.12).

12
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Finite recursion is insufficient to imply solution of proper admissible recurrence
satisfies either Akra-Bazzi condition. The counterexample in Section 15 to Leighton’s
Theorem 2 is a finitely recursive, proper, admissible recurrence whose unique solution
satisfies neither the strong nor weak Akra-Bazzi conditions.

Ratio condition implies strong Akra-Bazzi condition for admissible recurrences.
Lemma 9.6 implies every admissible recurrence satisfying the ratio condition also
satisfies the bounded depth condition. Therefore, each such recurrence has a unique
solution, which satisfies the strong Akra-Bazzi condition relative to the recurrence and
each tame extension of the recurrence’s incremental cost (Corollary 20.13).

Integer recurrences and the strong Akra-Bazzi condition. Lemma 21.1 says every
divide-and-conquer recurrence whose recursion set contain only integers satisfies the
bounded depth condition and has a unique solution, which is locally ©(1). If such a
recurrence R has low noise and its incremental cost has polynomial growth, then
Theorem 21.2 says the recurrence is admissible, so its solution satisfies the strong Akra-
Bazzi condition relative to R and each tame extension of the incremental cost. See
Section 5 for information about polynomial-growth interpolation, which plays a role in
the proof of Theorem 21.2.

Relationship of our key result to Leighton’s Theorem 2. In Section 20, we define the
modified Leighton hypothesis for admissible recurrences, which is analogous to
conditions (1), (2), and (4) of Leighton’s Theorem 2 but with p replaced by |p| in strict
versions of conditions (4a) and (4b). We do not require condition 3 of Theorem 2; the
polynomial-growth condition satisfied by the incremental cost of an admissible
recurrence suffices.

Lemma 26.1 is a proposition about admissible recurrences satisfying the modified
Leighton hypothesis and is analogous to the inductive hypothesis in Leighton’s argument
for Theorem 2. The proof of Lemma 26.1 is very similar to Leighton’s argument, but
relies on our replacement in Section 22 for Lemma 2 of [Le], a different partition of the
recursion set (Lemma 23.2), our replacement in Section 25 for inequalities that fail when
p < 0 (see Sections 24), and other changes to the inductive hypothesis.

The proof of Lemma 26.1 also uses Lemma 20.9, which says each admissible recurrence
satisfying the modified Leighton hypothesis also satisfies the bounded depth and strong
ratio conditions and has a unique solution, which is locally ©(1).

Lemma 26.1 is used to prove Lemma 20.8, which says the solution of an admissible
recurrence satisfying the modified Leighton hypothesis satisfies the strong Akra-Bazzi
condition relative to the recurrence and each tame extension of the incremental cost.
(Theorem 20.11 is not available at the point we prove Lemma 20.8).

Lemma 20.10 says a locally ©(1) solution T of an admissible recurrence R with

unbounded recursion set must also be the solution of an auxiliary admissible recurrence S
that satisfies the modified Leighton hypothesis. The recurrence S is derived from R by

13
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extension of the domain of the base case and restriction of the recursion set. Lemma 20.8
implies T satisfies the strong Akra-Bazzi condition relative to S and each tame extension
of the incremental cost of S. Lemma 20.6 says T must then also satisfy the strong Akra-
Bazzi condition relative to R and each tame extension of the incremental cost of R. In
this fashion, we obtain the proof of our most fundamental proposition, Theorem 20.11, in
the case of an unbounded recursion set. The proof is straightforward when the recursion
set 1s bounded.

Adjustment of the base case. Leighton’s Theorem 2 says “x, is chosen to be a large
enough constant” so that condition (4) of the proposition is satisfied but does not prove
the existence of such a value. According to a footnote, “Such a constant value of x, can
be shown to exist using standard Taylor series expansions and asymptotic analysis.”

Our analogous assertion is Lemma 20.7, which is proved in Sections 27 and 28. The
existence of “sufficiently large x,” in the context of Leighton’s Theorem 2 is a
consequence of our Corollaries 27.8 and 27.10.

We note that a change to the value of x;, is a change to the domain of the base case,
which is significant when the bounded depth condition is violated. Our counterexamples
to Theorem 2 are sensitive to the choice of x,. They require that x, < 10000.

Limits of solution sensitivity to base case. Section 29 identifies some conditions under
which changes to the base case of a divide-and-conquer recurrences have limited
asymptotic effect on the solution (including some changes that violate our definition of a
divide-and-conquer recurrence).

Asymptotic incremental cost. Roughly speaking, the examples in [Le] implicitly
assume that asymptotic behavior of a divide-and-conquer recurrence with incremental
cost g and an unbounded recursion set is unaffected (up to ®-equivalence) by substitution
of g* for g when g* is any (presumably non-negative) real-valued function on the
recursion set satisfying g* = 0(g). As we explain in section 29, the assumption is not
universally true but is valid subject to some mild conditions. Indeed, non-negativity of
g" 1s not always required.

A caveat to Leighton’s asserted solution of a recurrence that does not have low
noise. The claimed solution, which does not satisfy the Akra-Bazzi formula, is valid if
and only if x, > e2. See Section 30.

Relationship of our results to the Master Theorem. In Section 33, we establish
generalizations of the Master Theorem as a consequence of our replacements for
Leighton’s Theorem 2. Section 34 discusses some caveats about the Master Theorem as
stated in [CLRS].

Nonhomogeneous difference equations with constant coefficients. In Section 35, we

apply our results via a change of variables to some nonhomogeneous recurrences of the
form

14
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0(1), forne{n,—1,..,ny, —k}
k
T(n) =
() Z a;T(n—j)+gn), for each integer n = n,
=1

where ng and k are integers with k > 0, each a; is a non-negative real number, and g is a
non-negative real-valued function defined at each integer n = n,. At least one a; is non-
zero. Such recurrences can be represented as linear difference equations with constant
coefficients. The equation is homogeneous if g is identically zero; otherwise, the
equation is nonhomogeneous. Theorem 35.1 says

T(n) =0 A" (1 + W du)

u
No A

if the function g* on
{e™ : n = n, is an integer}

that maps e™ to g(n) has polynomial growth. Here 4 is the unique positive root of the

polynomial
K
k Kk—j
X —Zajx J

j=1

and C is a continuous, real-valued extension of g to [n,, ) such that the function
z — C(logz) on [e™, o) has polynomial growth. There exists such a C by Lemmas 4.6
and 5.1. Theorem 35.1 also says
T(n) =6(1")
if
gn) = 0(A"/n'*€)
for some € > 0.

Corollary 35.2 is similar but assumes n, is positive, replaces polynomial growth of g*
with polynomial growth of g, and concludes that

Tn)=0[ A" (1 + jn ng) du)

for each tame extension G of g. The corollary also lists conditions that imply

T(n) = 0(").

Existence of a tame extension is guaranteed by Corollary 5.2.
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Some authors call such recurrences linear recurrence relations with constant coefficients.
We avoid that terminology because of potential confusion over the meaning of linear.
For example, the paper [AB] of Akra and Bazzi has the title, On the Solution of Linear
Recurrence Equations, although the subject of the paper i1s what we call divide-and-
conquer recurrences with low noise.

Generating functions are commonly used to solve difference equations. See [Kn],
[GKP], [GK], and [Wilf]. In Section 7, we explain the use of linear algebra to solve
homogeneous difference equations with constant coefficients. The propositions in
Section 35 employ very different methods and are applicable to both homogeneous and
nonhomogeneous difference equations.
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1. Notation, Terminology, and Other Conventions

Z,Z*,R, R*, C,and N represent the sets of integers, positive integers, real numbers,
positive real numbers, complex numbers, and the natural numbers (including zero),
respectively. Notice the use of boldface. The symbols Z, R, C, and N may be used to
represent mathematical objects other than Z, R, C, and N. If x is a function on a set of
integers, then x is a sequence with x,, representing x(n).

A function described as positive, non-negative, or identically zero is implicitly real-
valued. A set is positive if it is contained in R*. Unless stated otherwise, the term
number means real number, and language such as “let x > 1” refers to real values. Real
powers of positive numbers represent positive values. In the absence of a leading minus
sign, the symbol oo represents +o0o. Except where noted, we do not assume real-valued
functions defined on intervals to be differentiable, continuous or integrable.

Intervals. The term interval usually refers to a real interval, which we define to be a
connected subset of the real numbers. An interval is degenerate if it is empty or is a
singleton, 1.e., a set consisting of a single element. (Some authors equate degenerate
intervals with real singletons.)

The length of an interval X is denoted by length(X). Of course, length(®) = 0 and
length(X) = sup X — inf X for each non-empty, bounded interval X. In particular,
bounded intervals have finite length. Degenerate intervals have length zero, and positive
length is synonymous with non-degeneracy.

A subinterval of an interval [ is an interval that is a subset of I. A proper subinterval of |
is a subinterval that is a proper subset of I. (Some authors define a proper interval to be
an interval of positive length; with such a definition, the meaning of “proper subinterval”
becomes ambiguous.)

A positive, unbounded interval is a positive interval with no finite upper bound, i.e., an
interval of the form (L, 00) for some real L > 0 or [M, o0) for somereal M > 0. IfSisa
non-empty positive set, the minimum positive, unbounded interval containing S is the
intersection of all positive unbounded intervals containing S, i.e.,

17



1. Notation, Terminology, and Other Conventions

(S n{infS}) U (inf S, o).

Empty sums. We adopt the convention that the sum of an empty series is zero, e.g.,

Riemann integral. Unlike many published definitions of the Riemann integral, we
consider a real-valued function f to be Riemann integrable on each singleton interval
[c, ] in its domain. Of course,

jcf(x) dx = 0.

The validity of Lebesgue’s criterion for Riemann integrability extends to real-valued
functions on real singletons. See Section 10 for details.

A real-valued function f on a non-empty interval [ is locally Riemann integrable if f is
Riemann integrable on all non-empty compact subintervals of I. Local Riemann
integrability is indeed a local property: f is locally Riemann integrable if and only if for
all x € I there exists a bounded open interval W containing x such that the closure K of
I N W is contained in I, and f is Riemann integrable on K. If [ is compact, then f is
locally Riemann integrable if and only if f is Riemann integrable. Local Riemann
integrability does not imply convergence of improper integrals. Our terminology is
nonstandard: most authors say “Riemann integrable” where we say “locally Riemann
integrable”.

Asymptotically related real sets. A set S of real numbers is asymptotically contained in
a set T of real numbers if S NV € T for some positive, unbounded interval V. Real sets
X and Y are asymptotically equal if X N W =Y N W for some positive, unbounded
interval W. Our definitions imply X and Y are asymptotically equal if and only if each of
X and Y is asymptotically contained in the other: Asymptotic equality obviously implies
the asymptotic containments. The converse: X N1 S Y andY NJ € X for positive,
unbounded intervals I and J imply

Xn(n)D=Xnhnjcsc¥nhn]j=Yn{N]))
and
Ynnph)=ynpH)nicXXnj)nl=Xn{lnj),
1.e.,
Xn{n)=Yn{Nn])).

The sets X and Y are asymptotically equal because I N J is a positive, unbounded interval.
0, Q, and 0. Asymptotic notation (0, Q, 0) is defined herein only for certain real-

valued functions defined on certain sets of real numbers. Unlike many other sources
(e.g., [Kn]), we follow the convention of [CLRS] that requires asymptotically related
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functions to be asymptotically non-negative, i.e., they must have only non-negative
values for sufficiently large elements of their domains. (4symptotically positive functions
are defined similarly.) Apart from an exception (©(1)) described later, we require
asymptotically related functions to have asymptotically related domains that are
unbounded above. We do not require equality or asymptotic equality of domains.
However, each of the relations f = 0(g), f = Q(g), and f = ©(g) require the domain
of f to be asymptotically contained in the domain of g. (The relation is viewed as an
estimate for f, not an estimate for g. Asymptotic containment is more convenient than
asymptotic equality in some instances. A cumbersome restriction of the function on the
right-hand side is sometimes avoided.) Apart from the aforementioned exception of
0(1), the relation f = 0(g) means sup domain(f) = oo and there exists a positive,
unbounded interval H and a, b € R* such that

domain(f) N H € domain(g)
and

0<ag(x) < f(x) < bg(x)

for all x € domain(f) N H. The relation f = Q(g) is satisfied if sup domain(f) = o
and there exists a positive, unbounded interval I and ¢ € R* such that

domain(f) NI € domain(g)
and

0<cg(x) <fx)

for all x € domain(f) N 1. The relation f = 0(g) is satisfied if sup domain(f) = o
and there exists a positive, unbounded interval J and d € R* such that

domain(f) NnJ € domain(g)
and

0<f(x)<dg(x)

for all x € domain(f) N J. The relation f = ©(g) is equivalent to the combination of
f =0(g) and f = Q(g) since the intersection of two positive, unbounded intervals is a
positive, unbounded interval.

0(1) on set with finite upper bound. Although the standard definition of Big-Theta
asymptotic notation is not meaningful for the restriction of a real-valued function to a set
of real numbers with a finite upper bound, language such as

T(x) = 0(1) forx € [1, x,]
appears in [Le]. The apparent intended meaning is that T([1, x,]) has a positive lower
bound and a finite upper bound. Those are the conditions required by the applications in

[Le], namely the base cases of the inductions in the proofs of Theorems 1 and 2. [CLRS]
uses O(1) similarly, e.g., “... T(n) = 0(1) for sufficiently small n ...” (p. 67).
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We adopt the same convention. Suppose X is a set of real numbers with a finite upper
bound. A function f on X satisfies f = @(1) if f is real valued and has a positive lower
bound and a finite upper bound. We also say f is ©(1). If F is a function whose domain
contains a set X, phrases equivalent to F|y = 0(1) include “F(x) = 0(1) for x € X and
“F is ©(1) on X”. According to our definition, every function is ®(1) on the empty set.

Locally ©(1) functions. A real-valued function T on a set D of real numbers is locally
O(1)if T|g = O(1) for every bounded subset S of D. The reader might reasonably expect
T:D — R to be called locally (1) if for all x € D there exists an open set W with x € W
and T|pnw = 0(1). The difference is illustrated by the function 1/x on (0, ), which is
©(1) on the neighborhood (u/2,2u) of u for all u € (0, ). Itisnot @(1) on (0,1) and
is therefore not locally ®(1). The author apologizes for any confusion caused by our
more restrictive definition.

O(1) on a union. Suppose T is a real valued function on a set D of real numbers such
that T|y = ©(1) and T|y = ©(1) for some subsets X and Y of D. We claim that

T|xuy = 0(1). Thereexista, b,c,d € RT and u,w € [—0,0) suchthata < T(x) < b
forallx € X N (u,o)and c < T(y) <d forall y € Y N (w, o). Furthermore, we may
letu = —c0 ifsupX < o, and w = —0 if supY < co. (Our definition of ©(1) depends
on whether the underlying set has a finite upper bound.) Define positive real numbers

L = min{a, ¢} and U = max{b,d}, so L < T(z) < U for all

z€ (XUY)n (max(u,w), ).

If sup(X UY) = oo, then T|yx,y = ©(1) because max(u,w) < co. If sup(X UY) < oo,
then sup X < oo and sup Y < oo, which implies

(XUuY)n (max(u,w),o) =XUY)N(—0,0)=XUY
and T|yyy = ©(1). This principle shall be applied henceforth without further comment.

Arithmetic on [0, c0]. Measure theory [Ta] employs an extension of addition and
multiplication from R* to the extended non-negative real axis [0, oo] that defines

X+ o0 =00+x =00
for all x € [0, ],

The resulting operations are commutative and associative, with multiplication distributive
over addition. They also preserve non-strict inequalities: if a, b, c,d € [0, o] such that
a < bandc < d, then

a+c<b+c<b+d
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and
ac < bc < bd.

Cancellation does not work with addition or multiplication by oo (or multiplication by 0).
For example,
3+ 00 =4+ 00 =00,

3:00 =14"-00 = 0o,

and
3:0=4-0=0,

but 3 # 4. For this reason among others, the quotients o /oo and 0/0 are undefined as is
the difference co — oo,

We use a little arithmetic on [0, o] as described above, although we don’t need the
product of 0 and oo. Strictly as convenient notational shorthand, we also adopt the
nonstandard conventions that x /0 = oo for all non-zero x € (0, o] and y/co = 0 for all
finite y € [0, o0), but make very limited use of these two definitions: The statements of
Lemmas 2.8 and 2.10(2) are simplified by the first convention, and the language of
Lemmas 2.9(4) and 2.10(4) are simplified by the second. Our conventions for division
by 0 and oo do not affect our applications of the aforementioned propositions; the
applications do not involve either 0 or oo as a denominator.

The indeterminate forms 0/0 and oo /oo are the only undefined fractions with numerators
and denominators in [0, o]. Our definition of arithmetic on the extended non-negative
real axis satisfies

=q-

S|

a
b
for all a, b € [0, o] with a/b defined, i.e., except whena = b =0ora = b = .

Our conventions imply continuity of division provided we avoid the indeterminate forms
0/0 and oo /o0: If a sequence x,, € [0, o] approaches X € [0, o] and a sequence

Yn € [0, 0] approaches Y € [0, o] such that x,, /y,, and X /Y are defined, then x,,/y,
approaches X /Y.

Division by 0 and oo is a notational convenience only and does not have all the usual
properties of division. For example,

0:(1/0)=0-00=0=1,

©0:(1/0)=0:0=0%#*1,
and
1
—=—=0w#*(0=0w-0=—-

0-c0c 0 0

1
; .

21



1. Notation, Terminology, and Other Conventions

Under suitable circumstances, the denominator of a product of fractions is the product of
denominators: If x,y € [0, o] such that {x, y} # {0, o}, then

1 11
xy xy
The familiar identity
x 1
y y/x

of R* can also be partially extended to [0, ©]. Observe that

a_O_l_ 1
w = o w/a
for all finite a € [0, o), and
b 1 1
—=0===—,
0 0 0/b
for all non-zero b € (0, ], so
X 1
y y/x

for all x,y € [0, o] for which x/y (equivalently y/x) is defined, i.e., {x, y} & {{0}, {c0}}.

Division is well behaved with respect to inequalities. If a, b, c,d € [0, o] satisfy the
inequalities a < b and ¢ < d such that a/d and b/c are defined, i.e.,

{a,d},{b,c} & {{0},{0}},
we claim that

<

QlQ
a|s

Ifa,b,c,d € R*, the inequality above is proved by dividing the relation ac < bd by cd.
Thus, we may assume one or more of a, b, ¢, d is 0 or o, which implies either 0 € {a, c}
or © € {b,d}. Then either a/d = 0 or b/c = oo, so the claimed inequality is satisfied.

Set notation. We distinguish between and S € T and S € T. The former means S is a
subset of T', 1.e., every element of S is an element of T. The latter means S is a proper
subset of T,1.e., S € T and S # T. Of course, @ represents the empty set.

We inconsistently use both A — B and A \ B to denote the difference of sets A and B.

Upper and lower subsets. An initial subset of a set S of real numbers is a subset L of S
that satisfies x < y forall x € L and all y € S — L. An initial subset is also called a
lower subset. An upper subset of S is a subset U of S that satisfies u > w forallu € U
and allw € S — U. (Of course, these notions can be defined more generally for partially
ordered sets; however, we require them only for sets of real numbers).
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The complement of a lower subset is an upper subset, and vice versa. For example, the
lower subsets of the positive integers are

¢J {1}1 {112}’ {112)3}1 R 4 Z+)
and the upper subsets are

Z+,{234,..},{345,..},{456 ..}, ..., b.

Lower subsets of [1, o) include [1,2] and [1, 2), with corresponding upper subsets
(2,00) and [2, ), respectively.

If X is a subset of a set S of real numbers, the minimum initial subset of S containing X is
the intersection M of all initial subsets of S containing X, i.e.,

M= (S N (—oo, supX)) U (X n{supX}).

Functions. There are two common conventions for the definition of a function, with
each having advantages and disadvantages. Since they have some incompatibilities, we
shall examine our choice of definition in detail.

A binary relation is a set of ordered pairs. Given a binary relation R,

{x : (x,y) € R for some y}
and
{y : (x,y) € R for some x}

are sets ([Je] p. 10) called the domain and range, respectively. We sometimes refer to
them as domain(R) and range(R). A functional graph is a binary relation with no two
elements having the same first component.

We define a function to be a functional graph. Functions are sometimes called maps,
mappings, or transformations among other names. Of course, given a function f and

x € domain(f), the expression f(x) represents the unique y € range(f) for which
(x,y) € f. The element y is called the value of f at x or the image of x (under f). We
also say f maps x to y. The mapping of x to y is sometimes denoted by x — y. The
graph of a function f is the set

{(x,f(x)) tX E domain(f)}.
By our definition, a function is equal to its own graph. The simplest and least interesting
example of a function is the empty function, which has an empty domain, range, and

graph. All other functions are non-empty.

If f is a function with domain A and the range of f is contained in a set B, we call f a
function from A to (or into) B and say f maps A to (or into) B. The notation f:A - B
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has the same meaning. We adopt the nonstandard terminology that B is a codomain of f.
In function language, target is a synonym for codomain.

Notice our reference to a codomain, not the codomain. According to our nonstandard
definition, every function has an infinite number of codomains. Functions f and g are
equal if and only if they have the same domains and f(x) = g(x) for all x in their
common domain.

Many published definitions of a function specify a unique codomain (or target). For
example, Bourbaki ([Bo], p. 81) defines a function to be an ordered triple f = (F, A, B),
where F is a functional graph, A is what we call the domain of F, and B is what we call a
codomain (or target) of F. Bourbaki considers A and B to be the domain and the unique
target, respectively, of f (not F). They call f a function from A to B and use the notation
f:A — B. Suppose C # B is another set that contains f (x) for all x € A. According to
Bourbaki’s definition, f is not a function from A to C and the notation f: 4 = C is
inapplicable. In their framework, functions f and g are equal if and only if they have the
same graph and the same target. Equality of domains follows from equality of graphs.

Consider the constant function a: Z — R defined by a(n) = m. The function @ maps Z
to R. According to our convention, @ also maps Z to {r}, i.e., @: Z - {m}. Under the
Bourbaki definition of a function,

a={nnm):n€Z}ZR)
and

p=U(nn):neZ}Z{n})

are distinct functions although domain(a) = Z = domain(f) and a(n) = f(n) for all
n € Z. Futhermore, the set R is the only target of a, and the notation a: Z — {r} is
inapplicable. Similarly, the set {7} is the only target of 8, and the notation f: Z — R is
inapplicable.

Incorporation of a unique codomain into the definition of a function is harmonious with
category theory—see [Ma]. An earlier version of this document implicitly assumed such
a definition. However, there was some bureaucratic overhead. At several places in later
sections, two functions were required to differ only in their codomains. A reader unused
to such gyrations might find them confusing, so the author reluctantly switched
definitions. Hopefully, our convention does not confuse readers (such as myself) who
prefer a unique codomain for each function.

Given a function f: A — B and a subset S of A, the image of S under f is the set
f&) ={f(x):x €S}
Our use of f(S) is an abuse of notation; there is a potential ambiguity if S is also an

element of A; however, the meaning should always be clear from context. Some authors
write f[S] instead of f(S) to distinguish the image of a subset of the domain from the
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function’s value at an element of the domain. If Y = f(S), we say f maps S onto Y. The
image f(A) of the domain A under f is also called the image of f.

According to our definitions, the image and range of f are identical. Some authors
(especially in earlier times) define a function’s range differently. Their range is what we
would call a codomain or target. (Some such authors require each function to have
exactly one range; some allow multiple ranges per function; others are silent or
ambiguous on the subject.)

A function f is injective (AKA -1 or one-to-one) if x = y for all x,y € domain(f) that
satisfy f(x) = f(y). Aninjection is an injective function. If functions are defined to
have unique codomains, then there are meaningful definitions of surjective, surjection,
bijective, and bijection: A function is surjective (AKA onto) if the image and codomain
of the function are the same sets. A surjection is a surjective function. A function is
bijective if it 1s injective and surjective. A bijection is a bijective function and is also
called a one-to-one correspondence. However, functions have multiple codomains
according to our definition of a function, so the terms surjective, surjection, bijective, and
bijection are not well defined. Nonetheless, we say a function maps its domain onfo its
image.

Mathematicians are sometimes inconsistent in their language about functions. For
example, Bourbaki ([Bo] pp. 81-82) gives the ordered triple definition of a function, then
says: “Throughout this series we shall often use the word “function” in place of
“functional graph”.” Moschovakis ([Mo], pp. 3—4, 38—40) uses a definition of function
that is equivalent to ours but also defines surjections and bijections. Like some other
authors, he uses context and double-headed arrows to indicate specific ranges (his range
is our non-unique codomain) for surjections and only refers to surjections or bijections
when the relevant range is identified by context and notation. We also reserve the right
to abuse terminology by using the terms surjective, surjection, bijective, and bijection
when a particular choice of codomain is apparent from context.

Our convention for composition of functions is dictated by our choice of definition of a
function: If g:W — X and f: X — Y are functions, then the composition of f and g is the
function

fogW->Y

(f o)) = f(g(x))

defined by

for all x € W. Some authors who require unique targets for functions also require the
domain of f to be the codomain of g. We require only that the domain of f contains the
range of g.

Given f: A — B and a set T, the preimage (or inverse image) of T under f is the set

fU(T) ={a€A:f(a) €T}
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This notation can cause some confusion since preimages are defined regardless of
whether the function f has an inverse. Some authors use alternative notation such as
f_1(T) to avoid confusion. The notation f~1[T] also appears in the literature. The set T
need not be contained in the range of f. The set T is commonly assumed to be contained
in the codomain; however, in our language, every set is contained in some codomain of
the function.

The phrase “f is a function on A” means that f is a function with domain A. The identity
map on a set A is the function id: A — A defined by id(a) = a for all a € A.

Restriction and extension of functions are dual concepts: If f is a function on a set A and
S is a subset of A, then the restriction of f to S is the function f|s: S — f(S) defined by
fls(x) = f(x) forall x € S. If A* is a set containing A, an extension of f to A* is a
function f* on A* such that f*|4 = f. We also say [~ extends f to A*.

If f and g are functions, and
S € domain(f) N domain(g),
then f agrees with g on S if f|s = g|s, i.e., f(x) = g(x) forall x € S.

In some contexts, a function exponent represents exponentiation of function values. For
example, sin®x = (sin x)? and log"(x) = (log(x))n. However, composition of
functions is sometimes intended. If f:S — S is a function from a set S to itself, we may
let £ be the identity function on S and recursively define f*:S - Sby f™* = f o f*71
for each positive integer n. Suppose f:S — S is a bijection, so the function f has an
inverse f~1:S — S. For each negative integer k, we define f¥:S - S by

fr= (K,
= ()

The meaning of a function exponent is usually clear from context. However, we typically
identify those instances where a function exponent refers to composition of functions.

SO
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2. Polynomial Growth

This section defines polynomial-growth functions and delineates their basic properties.
All nontrivial polynomial-growth functions are shown to be positive, with reciprocals that
are also polynomial-growth functions. Behavior on lower subsets of their domains is
analyzed in detail. A connection between polynomials and polynomial growth is made
explicit. We show that some positive polynomial functions do not have polynomial
growth. Conditions for preservation of polynomial growth under ®-equivalence are
determined. We also provide a convenient interpretation of polynomial growth based on
bounded dynamic ranges. There are no surprises.

Polynomial growth is an unsatisfactory description for the class of functions in question.
Some variant of “uniformly bounded dynamic range” might be preferable. However, we
defer to Leighton [Le] in his choice of this terminology.

Leighton defines a polynomial-growth condition in the context of a recurrence involving
a non-negative real-valued function g and coefficients by, ..., by, where 0 < b; < 1 for
each index i. (There are also coefficients a4, ..., a; > 0.) The domain of g is never
specified, but Leighton’s polynomial-growth condition implicitly requires the domain to
contain [min S, o) where S = {by, ..., by }.

Definition. Let S be a non-empty, finite subset of the open interval (0,1). A candidate

(for Leighton’s polynomial-growth condition) relative to S is a non-negative real-valued
function whose domain contains [min S, ).

Leighton’s polynomial-growth condition is a property of the restriction of g to
[min S, o):
Definition. Let S be a non-empty, finite subset of the open interval (0,1). A function g

satisfies Leighton’s polynomial-growth condition relative to S if g is a candidate relative
to S, and there exist positive real numbers ¢; and c, such that for all § € S and all x > 1,

c19(x) < g(u) < c,9(x)

for all u € [Bx, x].
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For convenience, we sometimes ignore the choice of S in the two preceding definitions.
When we say a function satisfies or is a candidate for Leighton’s polynomial-growth
condition without reference to such a set, the existence of an appropriate subset S of
(0,1) is implied.

The ad hoc definition of Leighton’s polynomial-growth condition is artificially dependent
on the choice of S. We define a polynomial-growth function in a slightly different
fashion and provide a simple characterization (Lemma 2.16) of such functions when their
domains are intervals. Corollary 2.17 says that a candidate relative to S satisfies
Leighton’s polynomial-growth condition relative to S if and only if its restriction to

[min S, o) satisfies our definition of polynomial growth. We note that [Le] makes no
use of his function g’s behavior outside the interval [min S, ©). Our definition will be
derived from the following simple variation of Leighton’s condition:

Definition. Let b > 1. A b-polynomial-growth function is a non-negative real-valued
function g on a positive, unbounded interval I such that there exist c; > 0and ¢, > 0
with

c1g(x) < g(u) < cg9(x)

for all x € I and all u € [x, bx].

A b-polynomial-growth function is said to satisfy the b-polynomial-growth condition.
Lemma 2.16 will show that satisfaction of the b-polynomial-growth condition does not
depend on the choice of b.

Since the domain of a b-polynomial-growth function is a positive, unbounded interval,
the domain contains [x, bx] for all x in the domain as implicitly asserted in the definition
above. Indeed, the domain contains [x, ).

Lemma 2.1. A candidate g relative to a non-empty, finite subset S of (0,1) satisfies
Leighton’s polynomial-growth condition relative to S if and only if the restriction of g to
[min S, ) is a b-polynomial-growth function where b = 1/min §.

Proof. Tt follows from min S € (0,1) that b > 1. Suppose the restriction of g to
[min S, ) is a b-polynomial-growth function. By definition of a b-polynomial-growth
function, there exist positive real numbers d; and d, such that

d1g(t) < g(w) < dog(t)

forall t € [min S, ) and allw € [t,bt]. Let B € Sandx = 1,s0 8 = 1/b and

min S = < fx <x.

[l
[l R

Thus, x/b € [min S, ©) and [Bx,x] € [x/b,x]. Letu € [Bx,x],sou,x € [x/b,x] and
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<&

d
d—zg(x) < dig(x/b) < g(w) < d,g(x/b) < 4

g(x).

It follows from d; > 0 and d, > 0 that d,/d, > 0 and d,/d; > 0. Therefore, g
satisfies Leighton’s polynomial-growth condition relative to S with ¢; = d,/d, and
Cc, = dz /d1

We now prove the converse. Suppose g satisfies Leighton’s polynomial-growth
condition relative to S. Let ¢; and ¢, be as in the definition of that condition. Suppose
x € [minS, o) = [1/b, ), so bx = 1. Letu € [x,bx]. Since 1/b € S and x € [x, bx],

%9(") < c19(bx) < g(w) < 9 (bx) < ‘;—jg(x).

It follows from ¢; > 0 and ¢, > 0 that ¢; /¢, > 0 and ¢,/c; > 0. Thus, the restriction of
g to [min S, ) is a b-polynomial-growth function. O

The definition of a b-polynomial-growth function requires the domain to be a positive,
unbounded interval. We are also interested in behavior of functions with other positive
domains such as sets of positive integers:

Definition. A function has polynomial growth if it can be extended to a b-polynomial-
growth function for some b > 1.

A function with polynomial growth is called a polynomial-growth function and is said to
satisfy the polynomial-growth condition. The phrase polynomial-growth condition does
not refer to Leighton’s polynomial-growth condition unless explicitly identified as such.
Lemma 2.16 will establish independence of the polynomial-growth condition from the
choice of b.

If a function’s restriction to a subset X of its domain has polynomial growth, we say the
function has polynomial growth on X or satisfies the polynomial-growth condition on X.

Our definition of a polynomial-growth function is intentionally simple. However, the
definition is arguably too simple because it is satisfied by the empty function. Inclusion
of the empty function reduces verbiage in some contexts but is a minor nuisance in
others. Some later definitions are similarly permissive with respect to the empty set. The
choice between inclusion and exclusion of these vacuous cases has no significance.

We catalog some immediate consequences of our definitions:
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Lemma 2.2.

(1) All polynomial-growth functions are real-valued and non-negative with positive
domains.

(2) The restriction of a polynomial-growth function to a subset of its domain has
polynomial growth.

(3) Let b > 1. The restriction of a b-polynomial-growth function to an unbounded
interval in its domain is also a b-polynomial-growth function.

(4) A function on a positive, unbounded interval has polynomial growth if and only if
it is a b-polynomial-growth function for some b > 1.

(5) A function has polynomial growth if and only if it can be extended to a
polynomial-growth function on some positive, unbounded interval.

(6) A function f with a non-empty positive domain D has polynomial growth if and
only if f can be extended to a polynomial-growth function on the minimum
positive, unbounded interval containing D.

(7) A function f is a candidate for Leighton’s polynomial-growth condition if and
only if f is real-valued and non-negative with a domain that contains a positive,
unbounded interval that properly contains [1, o).

(8) If a function f satisfies Leighton’s polynomial-growth condition, then f has
polynomial growth on [1, ).

Proof. (1) A polynomial-growth function is real-valued and non-negative with a positive
domain because it is the restriction of some b-polynomial-growth function, which by
definition is real-valued and non-negative with a positive domain.

(2) If g is a polynomial-growth function, there exists b > 1 and a b-polynomial-growth
function h that is an extension of g. If S is a subset of the domain D of g, then

gls = (hlp)ls = hls,

i.e., the function h is a b-polynomial-growth extension of g|s. By definition, g|s has
polynomial growth.

(3) Let h be a b-polynomial-growth function. Its domain is a positive, unbounded
interval /. Suppose [ is an unbounded interval contained in /. The interval I is positive
because J is positive. Let g = h|;. The function g is non-negative because h is non-
negative. By definition of a b-polynomial-growth function, there exist positive real
numbers ¢; and ¢, such that
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cith(y) < h(v) < c;h(y)

forall y € J and all v € [y, by]. Suppose x € I and u € [x, bx]. Since I is a positive,
unbounded interval, we have [x,bx] € [ € J. Then

¢19(x) = c;h(x) < h(w) = g(u) = h(w) < czh(x) = c9(x).

In particular,
¢ 9(x) < gw) < c9().

Thus g satisfies all the requirements of a b-polynomial-growth function.

(4) Let g be a function on a positive, unbounded interval. If g satisfies the b-polynomial-
growth condition for some b > 1, then g is a (trivial) b-polynomial-growth extension of
itself, which implies g has polynomial growth. Conversely, let h be a polynomial-growth
function on a positive, unbounded interval I. Then h has a b-polynomial-growth
extension H for some b > 1. Since h = H|;, part (3) implies h is also a b-polynomial-
growth function.

(5) follows from (4) and the definition of a b-polynomial-growth function.

(6) Let I be the minimum positive, unbounded interval containing D. (There is no such
minimum if D is empty.) If f can be extended to a polynomial-growth function on I,
then f has polynomial growth by part (5). Conversely, suppose f has polynomial
growth, so (5) implies f can be extended to a polynomial-growth function h on some
positive, unbounded interval /, which contains /. The function g = h|; has polynomial
growth by (2). Furthermore,

f=nhlp =Dl = 4glp,
i.e., g is an extension of f to I.

(7) By definition, each candidate for Leighton’s polynomial-growth condition is a non-
negative real-valued function with a domain properly containing [1, ). Conversely,
suppose f is a non-negative real-valued function, and domain(f) contains a positive
unbounded interval I that properly contains [1, ), so there exists b € I N (0,1). Then
[b, ) € I € domain(f), which implies f is a candidate for Leighton’s polynomial-
growth condition relative to {b}.

(8) There exists a non-empty, finite subset S of (0,1) such that f satisfies Leighton’s
polynomial-growth condition relative to S. In particular, f is a candidate relative to S, so
the domain of f contains [min S, ©). Let g be the restriction of f to [min S, ©). Lemma
2.1 implies g is a b-polynomial-growth function where b = 1/min S. The interval

[min S, ) contains [1,00). Let h be the restriction of g to [1,0). The function h
satisfies our definition of polynomial growth because g is a b-polynomial-growth
extension of h. The function f has polynomial growth on [1, o) because
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fliney = (flimins,e)) l[1,e) = 9l[1,00) = -

Polynomial-growth functions on intervals need not be differentiable or even continuous.
For example, let g be the nowhere continuous function with domain (0, o) defined by
g(x) = 1 for rational x and g(x) = 2 for irrational x. The function g also fails to be
Riemann integrable on any non-degenerate, compact interval in its domain. For each

b > 1, the function g satisfies the definition of a b-polynomial-growth function with

¢, = 1/2 and c, = 2. By Lemma 2.2(4), g has polynomial growth. Lemmas 2.1 and
2.2(3) imply the function g also satisfies Leighton’s polynomial-growth condition
relative to S whenever ¢ # S € (0,1) is finite. However, [Le] contains integrals
involving functions whose only explicit requirement is satisfaction of Leighton’s
polynomial-growth condition, which does not imply local Riemann integrability.

We now consider the simplest class of polynomial-growth functions (which vacuously
includes the empty function):

Lemma 2.3. Non-negative constant functions on positive sets have polynomial growth.
Non-negative constant functions on positive, unbounded intervals are b-polynomial-
growth functions for all b > 1.

Proof. Non-negative constant functions on positive, unbounded intervals satisfy the
definition of a b-polynomial-growth function for all b > 1 with ¢; = ¢, = 1. Non-
negative constant functions on positive sets can be extended to non-negative constant
functions on (0, ©) and therefore have polynomial growth. O

As a special case of Lemma 2.3, all identically zero functions on positive sets have
polynomial growth. We later show (Lemma 2.7) that a polynomial-growth function is
either positive or identically zero. (Only the empty function is both.) The obvious
proposition below is a first step in that direction:

Lemma 2.4. If g is a b-polynomial-growth function for some b > 1, and x is an element
of the domain of g, then the restriction of g to [x, bx] is either positive or identically

Z€10.

Proof. By definition of a b-polynomial-growth function, g is non-negative and there
exist positive real numbers ¢; and ¢, such that

c1g(x) < g(w) < c9(x)
forall u € [x, bx]. If g(x) = 0, then

0=C10Sg(u)SC20=0
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for all u € [x, bx], i.e., the restriction of g to [x, bx] is identically zero. If g(x) # 0, the
non-negativity of g implies g(x) > 0, so

gw) = c19(x) >0
for all u € [x, bx], i.e., the restriction of g to [x, bx] is positive. O

Lemma 2.5. Suppose g is a b-polynomial-growth function for some b > 1, and x is an
element of the domain of g. For each positive integer n, the restriction of g to [x, b™x] is
either positive or identically zero.

Proof. By Lemma 2.4, the restriction of g to [x, b1x] is either positive or identically
zero. Let n be any positive integer for which the restriction of g to [x, b™x] is either
positive or identically zero. Lemma 2.4 implies the restriction of g to [b™x, b"*1x] is
either positive or identically zero. Since

[x, b™*1x] = [x, b"x] U [b™x, b 1x]
and
b™x € [x,b™x] N [b™x, b+ 1x],

the restriction of g to [x, b™*1x] is positive if g(b™x) > 0. Similarly, the restriction of g
to [x, b™*1x] is identically zero if g(b"x) = 0. The lemma follows by induction. O

Lemma 2.6. If g is a b-polynomial-growth function for some b > 1, and x is an element
of the domain of g, then the restriction of g to [x, o) is either positive or identically zero.

Proof. All b-polynomial-growth functions are non-negative. In particular, g(x) = 0.
Lemma 2.5 implies the restriction of g to [x, b™x] is positive for alln € Z* if g(x) > 0,
and each such restriction is identically zero if g(x) = 0. The proposition follows from

[ee]

[x,0) = U [x, b™x].

n=1

Lemma 2.7. A polynomial-growth function is either positive or identically zero.

Proof. A polynomial-growth function g can be extended to a b-polynomial-growth
function h for some b > 1. Let I be the domain of h. By definition of a b-polynomial-
growth function, h is non-negative and I is a positive, unbounded interval. Suppose h is
not positive. Then h has a root z. Let y be any element of I, and define x = min(y, z),
so that x € I. Since z € [x, o), Lemma 2.6 implies the restriction of h to [x, ) is
identically zero. In particular, h(y) = 0. Therefore, h is identically zero if h is not
positive. Since h is an extension of g, we conclude that g is either positive or identically
Zero. 0
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Example of non-negative polynomial function without polynomial growth. The
function g(x) = (x — 1)? on (0, ) has 1 as its unique root, so Lemma 2.7 implies g
does not have polynomial growth on any positive set properly containing {1}.

Definition. For each positive set S, define

x
Ratios(S) = {; 1 X,y € S},
and
A(S) = sup Ratios(S).
For each positive function g and each subset X of its domain, define

Ay(X) =A(g(X)

where g(X) = {g(t) : t € X}. The quantity A(S) is called the dynamic range of S, and
A4 (X) is the dynamic range of g on X. If X is the domain of g, then A, (X) is the
dynamic range of g.

The lemma below provides an arguably more natural interpretation of dynamic ranges,
although the definition above is more convenient in some contexts. The proposition’s
statement uses our nonstandard convention that x/0 = oo for all non-zero x € (0, o].

Lemma 2.8. If S is a non-empty positive set, then

sup S

AS) = infS’

Proof. Since supS > 0 and 0 < infS < oo, the fraction sup S/inf S is defined. If
X,y € S,then x/y < sup S/infS. Therefore, A(S) < sup S/infS. There exists infinite
sequences x, and y,, in S such that x,, approaches sup S and y,, approaches infS. (The
sequences may have repeated terms.) Then x,,/y,, approaches sup S/infS. Therefore,
sup S/infS < A(S). O
A(Q) trivialities. Observe that

A(®) = sup Ratios(@) = sup @ = —o.
For each positive function g, we have

Ag(®) = A(g(D)) = A@) = —o.

The conclusion of Lemma 2.8 is invalid when S is the empty set because A(@) = —oo,
whereas (sup @)/ (inf @) is the undefined ratio (—o0)/co.
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The next lemma lists some of the most obvious properties of dynamic ranges. The
quotient in (4) uses our nonstandard convention that x/co = 0 for all finite x € [0, o).

Lemma 2.9. If S is a positive set, then
(1) A(S) = 1if S is non-empty.
(2) A(S) < oo if and only if infS > 0 and sup S < oo.
(3) A(S) < o0 if S is finite.
(4) If x is an element of S, then x/A(S) < infS and A(S)x = sup S.
(5) If Q is a subset of S, then A(Q) < A(S).
(6) If T isapositive setand SNT # ¢, then A(SUT) < A(S)A(T).
(7) If R is the set of reciprocals of elements of S, then A(R) = A(S).

Proof. (1) follows from Lemma 2.8, which also implies (2) when S # @. (2) also holds
when S = @ because A(@) = sup® = —0 < o and inf@ =oco0 > 0.

(3) We may assume S # @ because A(@) = —oo. Since S is a finite, positive set, we have
infS =minS > 0 and supS = max S < o, so A(S) < o by (2).

(4) By Lemma 2.8, A(S) = sup S/infS. Since x € R*, the quotient x/A(S) is defined.
Therefore,
x x

A(S) - sup S

-infS < infS
and

X
AS)x = ——- > .
S)x S supS =>sup S

(5) Q < S implies Ratios(Q) < Ratios(S), and hence A(Q) < A(S).

(6) If A(S) = o or A(T) = oo, then (5) implies A(S U T) = oo; furthermore, A(S) > 0
and A(T) > 0 by (1), so A(S)A(T) = oo and

AS UT) = AS)A(T).

Now suppose A(S) and A(T) are finite. Let Lg and Ly be the greatest lower bounds of S
and T, respectively, and let Us and U be the least upper bounds of S and T, respectively.
Since S and T are non-empty, we conclude that Lg and L are finite while Ug and Uy are
positive. Therefore, part (2) implies Lg, Ly, Us, Ur € R*, and Lemma 2.8 implies that
A(S) = Ug/Lg and A(T) = Uy /Ly.
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Define a = min (Lg, L), A = max (Lg, Ly), b = min (Us, U7), and B = max(Us, Ur).
Then inf(SUT) = a,and sup(SUT) = B.

There exists an element y common to S and T, so A < y < b. Therefore, b/A > 1, and
Lemma 2.8 implies

ASUT) = =— — = AS)A(T).

B
a L Ly

bB U
bB_UsUr
A a

(The argument above for finite A(S) and A(T) (and Lg, L7, Us, Uy € RY) is also valid
when A(S) = oo or A(T) = oo according to our nonstandard conventions for arithmetic
on [0,]. Since the numerators are non-zero and the denominators are finite, the various
fractions are defined. Furthermore, b/A > 1.)

(7) If x and y are elements of S, then 1/x and 1/y are elements of R, so that

x 1
—= ﬁ € Ratios(R),
y 1/x

and hence Ratios(S) € Ratios(R). Since S is the set of reciprocals of elements of R,
we also have Ratios(R) € Ratios(S). Therefore, Ratios(R) = Ratios(S), which
implies

A(R) = A(S).

Definition. If g is a positive function on a positive set D, define

W, (g) = supAy(D N [x, bx])
XED
and

Ratios,(g) = {g(y)/g(x):x,y € D,x < by,y < bx}
forall b > 1.

The simultaneous conditions x < by and y < bx are satisfied for x,y € D if and only if
either x € [y, by] or y € [x, bx].

If f is a positive function on a positive, unbounded interval I, we obtain the slightly
simpler representation

Y, (f) = sup Ag([x, bx])

because [x,bx] € I forall x € I,i.e., I N [x, bx] = [x, bx].
Trivialities about the empty function. W, (@) = sup @ = —o and Ratios;, (@) = @ for

all b > 1. In the trivial case of an empty function, Parts (7) and (8) of Lemma 2.10 will
rely on our nonstandard convention that the products
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(—00) - (—0) = o
and
(=) 00 =00:(—0) =—0
are defined in [—o0, 0].

The next lemma lists some of the most basic properties of ¥, (g). The quotient in
2.10(2) uses our nonstandard convention that x/0 = oo for all non-zero x € (0, »].
The quotient in 2.10(4) uses our nonstandard convention that y/co = 0 for all finite
y € [0, ) (although we don’t need the special case 0/ = 0 here).

Lemma 2.10. If g is a positive function on a positive set D and b > 1, then

(1) W,(g) = sup Ratios,(g) = supAy(S) where W = {§ € D : A(S) < b}.
sew

(2) If D is non-empty, then
sup g(D)
1<V < ——-
=¥ (g) < inf g(D)
(3) ¥, (g9|g) < ¥, (g) for each subset E of D.

(4) If z € S € D such that A(S) < b, then

9(2)
¥, (9)

<infg(S) and ¥,(g9)g(z) = sup g(S).

(5) ¥p(1/9) = ¥p(9).

(6) Y, (g9) =¥, (g) forall a = b.

(7) If D is an interval, then W,,.(g) < ¥, (g)¥.(g) forall ¢ > 1.
(8) If D is an interval, then ¥yn(g) < W,(g)" foralln € Z*.

Proof. We conclude from

U Ratios(g(S)) = Ratios, (g) = U Ratios(g(D N [x, bx]))
Sew X€D
that

supAy(S) = sup(sup Ratios(g(S))) = sup Ratios, (g)
sew Sew

and

sup Ratios,(g) = sup(sup Ratios(g(D N [x, bx]))) =sup A, (D N [x, bx]) = ¥, (g),
X€D X€ED
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which proves (1). We now prove (2): Lemma 2.9(1) and the definition of ¥, (g) imply
Y, (g) = 1. Let L = infg(D) and U = sup g(D). Since D is non-empty and g is
positive, we have L € [0,00) and U € (0, o], so U/L is defined. Furthermore,
g(t)/g(z) < U/Lforallt,z € D. Therefore,

U
sup Ratios, (g) < T
which combines with (1) to show W, (g) < U/L, which proves (2).
Let E € D, so that Ratios, (g|z) € Ratios, (g), which combines with (1) to yield

W, (glg) = sup Ratios, (g|g) < sup Ratios,(g) = ¥, (g),

which proves (3). Now let S and z be as in (4) and define T = g(S), so g(z) € T, which
implies T # @. Part (1) and Lemma 2.9(1) imply 0 < A(T) < ¥, (g), which combines
with g(z) > 0 and Lemma 2.9(4) to imply

9@ _ 9@
,(9) = AD

<infT <supT < A(T)g(z) < ¥,(9)g(2),

which proves (4). Lemma 2.9(7) implies
Ay;4(D N [x,bx]) = Ag(D N [x, bx])

for all x € D. (5) follows from (1) since Ratios, (1/g) = Ratios,(g). Lemma 2.9(5)
implies Ay(D N [x, bx]) < Ay(D N [x,ax]) foralla > b and all x € D, so

W, (g) = supAy (D N [x,bx]) < supAy;(D N [x,ax]) = Yo(g),

X€ED X€ED

i.e., (6) holds. For the remainder of the proof, we assume D is an interval. If D = @, then

Whe(g) = =00 < 00 = (—00)(—0) = ¥, (g)¥.(9)

forall c > 1, and
Wyn(g) = —00 < (=)™ =¥, (g)"

foralln € Z*. (Here (—)™ € {—o0,0}.) Therefore, it suffices to prove assertions (7)
and (8) under the assumption that D # @.

Letc > 1and x € D. Since D is an interval containing x, either bx € D or
D N [x, bcx] c [x, bx].

If bx € D, then g(bx) is defined and
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g(bx) € g(D n [x,bx]) n g(D N [bx, bex]),
which implies

Ag(D 0 [x,bex]) < Ag(D N [x, bxDA4(D N [bx, bex]) < W (9) ¥, (9)
by Lemma 2.9(6). If instead bx & D, then Lemma 2.9(5) implies
Ag(D N [x,bex]) < Ag(D N [x,bx]) < W, (g).
Part (2) implies W,.(g) = 1, so

Wpe(g) =supAy(D N [x, bex]) < W, (g) < Wp(9)¥:(9)

X€D

as claimed in (7). Since
Wy1(g) = ¥p(9) = ¥ (9D,

assertion (8) is true forn = 1. Suppose n € Z* such that W,n(g) < ¥, (g)™. It follows
from (7) that

Wyni1(g) < Wpn(g)¥,(9) < ¥p(9)"¥p(9) = ¥ ()™

Part (8) follows by induction. O

If ¥, (g) = o, Lemma 2.10(4) translates into the uninteresting inequalities
infg(D N [x,bx]) =0 and sup g(D N [x,bx]) < o

under our conventions for arithmetic on [0, c]. Similarly, assertions (7) and (8) become
Y, .(g) < w0 and WYyn(g) < oo, respectively.

Failure of ¥,,.(9) < ¥,(9)¥.(g) and ¥;n(g) < ¥,(g)" on disconnected domains.
Define the function g(x) = x on the set

D={emneZ}={ee?e3..}
Since the domain D is not an interval, parts (7) and (8) of Lemma 2.10 are not applicable

to the function g. Since D N [x,2x] = {x} for all x € D, we obtain ¥,(g) = 1. Observe
that D N [e™, 4e™] = {e™, e™*1} for all n € Z*, which implies ¥,(g) = e. Therefore,

w,(9) > (¥,()".

Lemma 2.11. If g is a positive function on a positive, unbounded interval and b > 1,
then g is a b-polynomial-growth function if and only if ¥, (g) < co.
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Proof. Let I = domain(g). Since [ is a positive, unbounded interval, we have
[x,bx] c I forall x € I. Suppose ¥,(g) < . Lemma 2.10(2) implies ¥, (g)

is positive, so we can define positive real numbers ¢; = 1/W¥,(g) and ¢, = ¥, (g).
Lemma 2.10(4) implies

c9(x) < g(u) < c9(x)
forall x € I and all u € [x, bx]. Therefore, g is a b-polynomial-growth function.

We now prove the converse. Suppose g is a b-polynomial-growth function, so there
exist positive real numbers ¢; and ¢, such that

0 < c;9(x) <infg([x, bx]) < sup g([x, bx]) <c,g(x) <
for all x € I. Lemma 2.8 implies

sup g([x,bx]) ¢,

= <=

Ag (L, bxl) infg([x,bx]) ~ ¢;
for all such x. Therefore,

Y, (g) = sup (Ag([x, bx])) < & < oo,

x€l €1

Corollary 2.12. The function x = x% on a positive set has polynomial growth for each
real a.

Proof. Define g: (0,00) = R* by g(x) = x%, so ¥,(g) = 2!*!. Lemma 2.11 implies g
is a 2-polynomial-growth function. By definition, g|, has polynomial growth for each
positive set D. O

Corollary 2.13. If a real-valued function g on a positive set has a positive lower bound
and finite upper bound, then g has polynomial growth.

Proof. Let L be a positive lower bound for g and let M be a finite upper bound for g.
Define an extension h of g to (0, ) by letting g(z) = L for all z € (0, 00) — D where
D is the domain of g. Then L < h(x) < M for all x € (0, ). Pick b > 1. By Lemma
2.10(1), we have

M
Y, (h) = sup(Ratiosb(h)) < T < oo,

Lemma 2.11 implies h is a b-polynomial-growth function. By definition, g has
polynomial growth. O

Corollary 2.14. Positive continuous functions on positive compact sets have polynomial
growth.
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Proof. Let g be a positive, continuous function on a positive compact set S. Since the
empty function has polynomial growth, we may assume S is non-empty. Continuity of g
and compactness of S implies g has a minimum and a maximum. The minimum and
maximum are finite and positive because g is a positive real-valued function. Corollary
2.13 implies g has polynomial growth. O

Compactness condition of Corollary 2.14. Define the positive continuous function g
on the positive half-open interval (0, 1] by

glx) = e'/~.

If g has polynomial growth, then g has a b-polynomial-growth extension h for some real
number b > 1. By definition of a b-polynomial-growth function, the domain of h is a
positive, unbounded interval. (In this case, domain(h) = (0,0).) Lemmas 2.10(3) and
2.11 imply

Yy (g) = ¥, (h) < .

However,
1

ex b—-1
> i = |j —=]j bx = ]j t =
Y, (g) = x“jgh Ay ([x, bx]) xlirggr bL xlirggr e bx th_)rg et = oo,
ebx

which implies W}, (g) = oo in contradiction to W, (g) < oo. Thus g does not have
polynomial growth. Corollary 2.14 is inapplicable to g because the domain of g is not
compact.

Corollary 2.15. If g is a positive function, then g has polynomial growth if and only if
1/g has polynomial growth.

Proof. Suppose g has polynomial growth, so there exists a b-polynomial-growth
extension h of g for some b > 1. The function h has polynomial growth because h is a
b-polynomial-growth extension of itself. Since the empty function is its own reciprocal,
we may assume g is non-empty. Therefore, positivity of g implies h is not identically
zero. By Lemma 2.7, the function h is positive. Lemmas 2.10(5) and 2.11 imply

¥p(1/h) = ¥p(h) < co.

The domain of 1/h is the same as the domain of h. In particular, domain(1/h) is a
positive, unbounded interval. Therefore, Lemma 2.11 implies 1/h is a b-polynomial-
growth function. The function 1/g has polynomial growth because 1/h is an extension
of 1/g. The converse follows from the argument above because 1/ g is positive and

g=1/1/9). O

Corollaries 2.12-2.15 can also be easily proved directly from the definitions of
polynomial growth and b-polynomial-growth functions without appeal to Lemma 2.11.
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The next proposition establishes independence of polynomial growth from the choice of
b>1.

Lemma 2.16. Let g be a real-valued function on a positive interval. Either all of
conditions (1), (2), and (3) are true or all of them are false. If domain(g) is unbounded,
then either all of conditions (1) through (5) are true or all of them are false.

(1) g is a polynomial-growth function.
(2) Either g is identically zero, or g is positive and W, (g) < oo for some b > 1.
(3) Either g is identically zero, or g is positive and W, (g) < oo forall b > 1.

(4) g is a b-polynomial-growth function for some b > 1.
(5) g is a b-polynomial-growth function for all b > 1.

Proof. If g is identically zero, then (2) and (3) are satisfied a priori and (1) follows from
Lemma 2.3, which also implies (4) and (5) when domain(g) is unbounded. We
conclude that the lemma is true when g is identically zero. Thus we may assume g is not
identically zero. In particular, g is not the empty function, i.e., domain(g) # @.

If condition (1) is true, g can be extended to a b-polynomial-growth function h for some
b > 1. By definition, the domain of h is a positive, unbounded interval. Lemma 2.2(4)
implies h has polynomial growth. Since g is not identically zero, h is not identically
zero. Lemma 2.7 implies g and h are positive. Lemmas 2.10(3) and 2.11 imply

Yy (g) = ¥, (h) < .
Therefore, (1) implies (2).

We now show that (2) implies (1). Suppose g is positive and W, (g) < oo for some
b > 1. Lemma 2.10(2) implies W, (g) = 1. LetI = domain(g) and z = supl. If
z = oo, then Lemmas 2.2(4) and 2.11 imply g has polynomial growth. Therefore, we
may assume z < oo. There exists a real numbert € I N (z/b, z), so
I N [t,0) =1nN][t,bt].
Let J be the minimum positive, unbounded interval containing I, so ] = I U [z, o).
Define the positive function f:J - R* by f|; = g and f(y) = g(¢t) forally € ] — I.
Letx € ]. Ifx € I, then [x,bx] € ] — I, so f([x,bx]) = {g(t)} and
Ar([x,bx]) = 1 < W, (g)
by Lemma 2.8. If [x, bx] € I, then
As([x, bx]) = Ay([x, bx]) < W, (9).

Assume x € [ and [x,bx] €I, sox € IN[z/b,z] and bx >z > t. If x < t, then
t € In|[x, bx], so
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f(x,bx] = 1) = {g(©)} € g(I n [x, bx]),
f([xr bX]) = g(l N [x, bx]) U f([x; bx] - I) = 9(1 N [xr bX]),

Ar([x, bx]) = Ay(I N [x, bx]) < ¥, (9).

and

Suppose instead that x > ¢, so

x€lNn[x,bx] cIn[t,o)=1n]t bt].

Define the interval
9
¥, (9)

,g(X)¥p(9) |-

Lemma 2.10(4) implies
fn[x,bx])=gln[x,bx]) €K
and
f(lx, bx] =D ={g(®)} € g n[¢t,bt]) S K.

Therefore, f([x, bx]) € K. Lemmas 2.8 and 2.9(5) imply

Ar([x, bx]) < ACK) = (W,(9))".
Therefore,

¥, (f) < max (¥,(9), (¥5(9))°) = (¥p(9))" < 0.

Lemma 2.11 implies f is a b-polynomial-growth function. The function g satisfies the
definition of a polynomial-growth function because f is an extension of g. Therefore, (2)
implies (1). We conclude that (1) and (2) are equivalent, i.e., either both (1) and (2) are
true or both are false.

We now show that (2) implies (3). Suppose again that ¥, (g) < oo for some b > 1.
Given ¢ > 1, there exists n € Z* such that b™ > c, so assertions (6) and (8) of Lemma
2.10 imply

Y. (9) < Wpn(g) < Wp(g)" <,

which confirms that (2) implies (3).

Condition (3) implies (2) because the interval (1, ) is non-empty. Therefore, (2) and
(3) are equivalent. Since conditions (1) and (2) are also equivalent, we conclude that
conditions (1), (2), and (3) are equivalent.

Now suppose g has an unbounded domain. Lemmas 2.2(4), 2.7, and 2.11 imply (2) is

equivalent to (4) and (3) is equivalent to (5). Therefore, either all or none of conditions
(1) through (5) are true. O
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We can now establish the relationship between Leighton’s polynomial-growth condition
and our definition of polynomial growth:

Corollary 2.17. A candidate g relative to a non-empty, finite subset S of (0,1) has
polynomial growth on [min S, o) if and only if g satisfies Leighton’s polynomial-growth
condition relative to S.

Proof. Letc =minSandb =1/c,so b > 1. Lemma 2.16 implies g has polynomial
growth on [c, ) if and only if the restriction of g to [c, ) is a b-polynomial-growth
function, which Lemma 2.1 says is equivalent to g satisfying Leighton’s polynomial-
growth condition relative to S. O

Part of Lemma 2.16 is applicable to functions on arbitrary positive sets:

Corollary 2.18. If g is a positive polynomial-growth function, then W, (g) < oo for all
b>1.

Proof. By definition, g has a c-polynomial growth extension h for some ¢ > 1. Since
domain(h) is a positive, unbounded interval, Lemmas 2.10(3) and 2.16 imply

¥p(g9) < Wp(h) <
forall b > 1. O

Example of W, (g) < oo and W.(g) = oo with b > 1 and ¢ > 1. Define a function g
on
D={3%unez*}=1{39.27..}

by g(x) = e*. Forall x € D, we have D N [x, 2x] = {x}, so ¥,(g) = 1. However,

D n [x,3x] = {x,3x}. Since D is unbounded and g(3x)/g(x) = e?* forall x € D, we
conclude that W5(g) = . By Corollary 2.18, the function g does not have polynomial
growth. Lemma 2.16 is inapplicable to g because D is not an interval.

Example of non-polynomial-growth function g with W,(g) < o for all b > 1.
Define a function g on
D={nl:neZ"}

by g(x) = e*. Let b > 1. The positive set D N [x, bx] is finite for all x € D, so Lemma
2.9(3) implies
Ay(D N [x,bx]) < oo

for all such x. Furthermore, D N [x, bx] # {x} for at most finitely many choices of

x € D. Since Ay({x}) = 1, we conclude that W}, (g) is the supremum of a finite set of
real numbers, which implies W, (g) < oo. Later in this section (Corollary 2.35), we show
that each polynomial-growth function f with inf domain(f) > 0 is bounded above by a
corresponding function of the form cx* for some positive real number ¢ and some non-
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negative integer k. The function g clearly violates any such bound. We conclude that g
does not have polynomial growth. Lemma 2.16 is inapplicable to g because D is not an
interval.

The function domains in the preceding two examples and an earlier example, in which
¥,(g) > W¥,(g)?, consist of positive, increasing infinite sequences. Discussion of
polynomial-growth functions on such domains, which occur naturally in divide-and-
conquer recurrences, can be found in Section 5.

Finite uniformity of b-polynomial-growth conditions. Let g be a polynomial-growth
function on a positive, unbounded interval I. Lemma 2.16 implies g is a b-polynomial
growth function for all b > 1. The definition of a b-polynomial-growth function requires
the existence of ¢c; > 0 and ¢, > 0 with certain properties. The choice of ¢; and ¢,
depends on the choice of b. However, given a finite set of choices for b, a common
choice of ¢; and c, exists. Let by, ..., by, be real numbers greater than 1 with maximum
value b. There exist positive numbers ¢; and c, such that

c19(x) < g(u) < c,g(x)

forall x € I and all u € [x, bx]. Observe that [x, b;x] € [x, bx] for each i, so

c19(x) < gw) < c9(x)
for all w € [x, b;x].

Non-negativity. For completeness, we consider what happens if the assumption of non-
negativity is dropped. For each b > 1, define a weak b-polynomial-growth function to be
a real-valued function that satisfies all the requirements of a b-polynomial-growth
function except it need not be non-negative. Also define a function to have weak
polynomial growth if it can be extended to a weak b-polynomial-growth function for
some b > 1. With obvious modifications, the arguments of Lemmas 2.4-2.7 show that a
weak polynomial-growth function must be positive, negative, or identically zero. For
each b > 1, a negative function on a positive, unbounded interval is a weak
b-polynomial-growth function if and only if its negative is a b-polynomial-growth
function, i.e., a polynomial-growth function (Lemma 2.16). It follows that a negative
function has weak polynomial growth if and only if its negative has polynomial growth.

We can also define a weak version of Leighton’s polynomial-growth condition that
allows a weak candidate to weakly satisfy Leighton’s polynomial-growth condition:
Insert “weak” before “candidate” and “weakly” before “satisfies”. The definition of a
weak candidate is obtained from the definition of a candidate by deleting the requirement
for non-negativity. A variant of Lemma 2.1 can be obtained by inserting “weakly” before
“satisfies” and “weak” before “candidate” and "b-polynomial-growth”. The resulting
proposition implies a variant of Corollary 2.17 that inserts “weakly” before “satisfies”
and “weak” before “candidate” and “polynomial growth”.
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The next lemma is primarily of interest when the domain of a polynomial-growth
function is (c, ) for some ¢ > 0.

Lemma 2.19. If g is a polynomial-growth function, and ¢ € (0, ) is a limit point of
domain(g), then
lim sup g(x) < co.

X—C

If g is positive, then
lim inf g(x) > 0.
X—C

(The limits are taken as elements of domain(g) approach c.)

Proof. By Lemma 2.2(5), g has a polynomial-growth extension h to some positive,
unbounded interval I, which also has ¢ as a limit point. We conclude that I contains

(¢, ).

If g is identically zero, the limit superior in question is zero, and hence finite; the
hypothesis for the second inequality is not satisfied. Thus we may assume g is not
identically zero. Therefore, h is not identically zero. Lemmas 2.7, 2.10(2), and 2.16
imply h is positive and 0 < W, (h) < oo.

Since ¢ € (0, ), the open interval W = (3¢/4, 2¢) is non-empty and contains ¢ as an
interior point. Furthermore, 3¢/2 and 2c are elements of (c, o) and are therefore in I,
the domain of h. Define the positive real numbers

_h(3c/2)
YW

U, = ¥,(hh(3c/2),

B h(2c)
2 w,(h)’

and
U, =¥,(h)h(2c).

Suppose x € I N W such that x # ¢. Observe that 2x > 3c/2 and x < 2¢. If x < c,
then 3c/2 € I N [x, 2x], so Lemma 2.10(4) implies

L, <h(x) < U,
If x > ¢, then 2c € I N [x,2x] , so Lemma 2.10(4) implies
L, < h(x) < U,

Therefore,
lim sup g(x) <lim sup h(x) < max(U;,U,) <

X—C X—-C
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and
lim inf g(x) = liminf h(x) = min(L,, L,) > 0.
X—C X—C

d

Counterexamples at zero and infinity. The requirement of Lemma 2.19 that ¢ € (0, ©)
is essential. Corollary 2.12 implies the positive functions x +— x and x — 1/x on (0, )
have polynomial growth. Their domains have 0 and oo as limit points in [0, o].
However,

lim sup x = lim x = oo,
x—>00 X—00

lim inf x = lim x = 0,
x—0t x—0

lim sup 1/x = lim 1/x = oo,
x—0+ x-0%
and
lim inf 1/x = lim 1/x = 0.
X—00 X—00

Positive polynomial function without polynomial growth. Define the polynomial
function g(x) = x — 1 on (1, ). The function g is positive and

im, 969 =0
Lemma 2.19 implies g does not have polynomial growth. Since
Jim, 1/90) =
Lemma 2.19 implies 1/g does not have polynomial growth either. (Non-polynomial-

growth of 1/g also follows from Corollary 2.15.) Failure of g and 1/g to be
polynomial-growth functions is illustrated by

g@2x) = 2x—-1

= 00,

= > | =
¥,(1/9) = ¥.(9) _11;15191) 0G0 AT

(See Lemmas 2.10(5) and 2.16.)

Sensitivity of polynomial growth to domain. As in the preceding example, define the
function g(x) = x — 1 on (1, ). Although g and 1/g do not have polynomial growth
on (1, ), they have polynomial growth on each positive, unbounded interval I properly
contained in (1, 00): Let ¢ = infl, so ¢ > 1. The function g is increasing (and positive),
SO

(2x) 2x — 1

g J—
W,(1/(glpD) =¥, (glp) = leéll) 9(x) = leéll) ~— 1"

The function (2x — 1)/(x — 1) is continuous and decreases on (1, ), so
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2x—1 2c—1
i SV R |

< oo

as required by Lemma 2.16.

Lemma 2.20. If g is a positive function on a set S of real numbers with infS > 0 and
sup S < oo, then g has polynomial growth if and only if g = ©(1).

Proof. 1If g = (1), then g has polynomial growth by Corollary 2.13. We now prove the
converse. Suppose g has polynomial growth.

The Lemma is vacuously true for the empty function, so we may assume S is non-empty.
Letc =infSandd = supS,s00<c<d<wandS C [cd].

We claim g is @(1) on SN [a,d] foralla € S: If a = d, then S N [a,d] = {a}, so g(a)

is simultaneously a positive lower bound and finite upper bound for the restriction of g to
S N [a,d], which implies g is ©(1) on S N [a, d]. Therefore, we may assume a < d. Let
b=d/asob>1. Lemma 2.10(2) and Corollary 2.18 imply 0 < ¥, (g) < . Lemma

2.10(4) implies g(a) /¥, (g) and ¥, (g)g(a) are a positive lower bound and finite upper
bound, respectively, for the restriction of g to S N [a, d]. In particular, g is ©(1) on

S N [a,d] as claimed.

Ifc € S,then gis ®(1) on SN [c,d], i.e., gis (1) on S. Therefore, we may assume
c &S. We conclude from S € [c,d] and S # ¢ thatc # d,soc < d and S S (¢, d].
Furthermore, c is a limit point for S. Define

1
L = =- lim inf g(x)
2 X—C
and
U=2-limsup g(x)

X—C

where the limits are taken as elements of domain(g) approach c. Lemma 2.19 implies

L > 0and U < . There exist v,w € S N (c,d) such that g(y) = L and g(z) < U for

allyeSn(c,v)andallz € SN (c,w). Lett = min(v,w) sot € SN (c,d) and
L<glx)<U

for all x € S N (c, t). In particular, g is ©(1) on S N (¢, t). As we previously
established, g is also is ©(1) on S N [t,d]. Therefore g is ©(1) on

(Snc,)uSnltd)=Sn(cd]=S.

Requirement that inf § > 0. The condition infS > 0 of Lemma 2.20 cannot be
replaced with positivity of S, as illustrated by the polynomial growth of functions x and
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1/x on (0,1) implied by Corollary 2.12. They lack a positive lower bound and finite
upper bound, respectively.

For future reference, we list three obvious corollaries to Lemma 2.20:

Corollary 2.21. If g is a positive polynomial-growth function, then g|g = ©(1) for all
S € domain(g) with infS > 0 and sup S < oco.

Proof. The function g|s inherits positivity from g. Lemma 2.2(2) implies g|s has
polynomial growth, so g|s = ©(1) by Lemma 2.20. O

Corollary 2.22. A positive polynomial-growth function is locally ®(1) if its domain has
a positive lower bound.

Proof. Let g be a positive polynomial-growth function. If S is a bounded subset of
domain(g), then infS > inf domain(g) > 0 and sup S < o, so g|s = ©(1) by
Corollary 2.21. Therefore, g is locally ©(1). O

Corollary 2.23. A polynomial-growth function g is bounded on each subset S of its
domain that satisfies inf S > 0 and sup S < oo.

Proof. By Lemma 2.7, g is either positive or identically zero. If g is positive, then
Corollary 2.21 implies g|s = ©(1); in particular, g|s is bounded. If g is identically zero,
than g|s is bounded above and below by zero. O

Lemma 2.24. Let D = A U B be a positive set, where one of 4, B is either a lower or
upper subset of D. A positive function g on D has polynomial growth (on D) if and only
if g has polynomial growth on A and B.

Proof. If g is a polynomial-growth function, then Lemma 2.2(2) implies g has
polynomial growth on A and B. We now prove the converse. We suppose g has
polynomial growth on both A and B and will show that g is a polynomial-growth
function (i.e., has polynomial growth on all of D).

If one of 4, B is a lower subset of D, we may assume without loss of generality that A is a
lower subset. If neither A nor B is a lower subset, then one of A4, B is an upper subset,
which we may assume is B without loss of generality.

If A is a lower subset, define L = A and U = D — A. Otherwise B is an upper subset, and
we define L = D — B and U = B. The set D is the disjoint union of L and U.
Furthermore, L is a lower subset of D, and U is an upper subset of D. Observe that L € A
and U € B. By Lemma 2.2(2), polynomial growth of g on 4 and B implies polynomial
growth of g on L and U, respectively.
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If L = @, then D = U, which combines with polynomial growth of g|; to imply g is a
polynomial-growth function. Similarly, if U = @, then D = L, which combines with
polynomial growth of g|; to imply g is a polynomial-growth function. Thus we may
assume L and U are non-empty, so D is also non-empty.

Let D* and U* be the minimum, positive, unbounded intervals containing D and U,
respectively. The containment U € D implies U* € D*. Since L is a non-empty lower
subset of D, we conclude that D* is also the minimum positive, unbounded interval
containing L. Define the interval L* = D* — U*, so L* is a lower subset of D* and U~ is
an upper subset of D*. Forall a € L, we have a < b forall b € U, so U € (a, ) and
hence U* € (a, ), which implies infU* > a > 0and a € U*, so a € L*. Therefore,
LS L*cD*(andL* # @,U* c D*).

By Lemma 2.2(6), there exist polynomial-growth extensions f of g|, and h of g|, to D*
and U, respectively. Positivity of g and non-emptiness of L and U imply neither f nor h
is identically zero. Lemma 2.7 implies f and h are positive. By Lemma 2.2(2), f|,+ has
polynomial growth. Since D™ is the disjoint union of L* and U™, we may define a positive
function p on D* by p|,» = f|,+ and p|y* = h, so that p has polynomial growth on L* and
U*. Corollary 2.18 implies W, (p|;+) < o and W, (p|y+) < oo. Furthermore,

ple = @Il = (1)l =flo =glL

and
plu = @ly)ly = hly = glu

because LS L* € D* and U € U* c D*. Therefore,

Plp = Pliow = 9low = 9lp = 9.

Letc =infU*and W = D* N [c/2,2c],soinfW = ¢/2 > 0and supW < 2¢ < oo.
DefineS=L"NnWandT =U"NnW,sothat W =S UT. The sets S and T have positive
lower bounds and finite upper bounds. Since S € L* € D* and T < U*, Lemma 2.2(2)
implies f has polynomial growth on S, and h has polynomial growth on T. Observe that

pls = @I)ls = (Fl)ls = fls

and
plr = (ly)|r = hlr,

so p has polynomial growth on S and T. Lemma 2.20 implies p|s and p|; are ©(1).
Since W = S U T, the function p|,, is also ©(1), i.e., p|y, has a positive lower bound and
finite upper bound. (Recall our definition of @(1) on a set with a finite upper bound).
Corollary 2.13 implies p has polynomial growth on W, and Corollary 2.18 implies

Y, (p|w) is finite.

Let x € D*, so [x,2x] € D*. If [x, 2x] € L*, then

Ap([xr 2x]) < ¥, (pl).
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If [x,2x] € U*, then
Ap([x, 2x]) < W, (plu~)-

If [x, 2x] is not contained in either of the intervals L* or U*, we conclude from
D*=L"uUU"and supL* < infU"* that x € L* and 2x € U*. Thus x < ¢ < 2x, so
c/2 < x and 2x < 2¢. We conclude that [x, 2x] c [c¢/2, 2c], so [x,2x] € W and

Ap([x,2x]) < W, (plw)-
Therefore,

¥, (p) < maX(‘Pz(plL*),‘Pz(pla*),‘l’z(plw)) < .

Lemma 2.16 implies p has polynomial growth, so p|p has polynomial growth by Lemma
2.2(2). The proposition follows from p|p = g. O

Counterexample when g is not a positive function. Define D = {1,2}, A = {1}, and
B = {2}, so A is a lower subset of D and B is an upper subset of D. Define g: D — R by
g(1) =0and g(2) = 1. Lemma 2.3 implies g|, and g|z have polynomial growth, and
Lemma 2.7 implies g is not a polynomial-growth function. Lemma 2.24 is inapplicable
to g because g is not a positive function.

Counterexample when neither A nor B is a lower or upper subset of the domain.
Let A be the set of odd positive integers and let B be the set of even positive integers.
Define a positive function g on Z* by g(a) = 1 and g(b) = b for all a € A and each
b € B. Lemmas 2.3 and Corollary 2.12 imply g has polynomial growth on A and B.
Observe that W, (g) = o. By Corollary 2.18, g is not a polynomial-growth function.
Lemma 2.24 is inapplicable since neither A nor B is a lower or upper subset of Z™.

We now identify some simple consequences of Lemma 2.24:

Corollary 2.25. Let D = A U B be a positive set, where one of 4, B is either a lower or
upper subset of D. If infA > 0 and sup A < oo, then a positive function g on D has
polynomial growth (on D) if and only if g|, = ©(1) and g has polynomial growth on B.

Proof. By Lemma 2.24, g has polynomial growth (on D) if and only if g has polynomial
growth on A and B. Lemma 2.20 implies implies g has polynomial growth on 4 if and
only if only if g|4, = 0(1). O

Corollary 2.26. Let d be an element of a positive set D. A positive function g on D has
polynomial growth (on D) if and only if g has polynomial growth on D — {d}.

Proof. 1f g is a polynomial-growth function, then g has polynomial growth on D — {d}

by Lemma 2.2(2). We now prove the converse. Assume g has polynomial growth on
D —{d}.
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Lemma 2.3 implies g has polynomial growth on {d}. Let L = {x € D : x < d} and
U={x€D:x>d}. Lemma2.2(2)implies g has polynomial growth on L and U since
L and U are subsets of D — {d}. The singleton {d} is a lower subset of {d} U U, so
Lemma 2.24 implies g has polynomial growth on {d} U U, which is an upper subset of D.
Since D = L U ({d} U U), Lemma 2.24 implies g is a polynomial-growth function. m

Polynomial growth of a positive function on [c, ©) vs. (c, ) with ¢ > 0. By
Corollary 2.26, a positive function g on [c, ) has polynomial growth if and only g has
polynomial growth on (c, ).

Corollary 2.27. Suppose ¢ > 0, and g is a real-valued function on [c, o) that is
continuous at ¢. The function g has polynomial growth on [c, ) if and only if g has
polynomial growth on (c, ).

Proof. Let h be the restriction of g to (¢, ). If g is a polynomial-growth function then
h has polynomial growth by Lemma 2.2(2). We now prove the converse. Suppose h has
polynomial growth. Lemma 2.7 implies h is either positive or identically zero. If h is
identically zero, then continuity of g at ¢ implies g(c) = 0, so g is identically zero and
has polynomial growth by Lemma 2.3. If h is positive, then Lemma 2.19 and continuity
of g at ¢ imply g(c) > 0, so g is positive. Polynomial growth of g follows from
Corollary 2.26. O

Corollary 2.28. Let D = A U B be a positive set, where A is finite. A positive function g
on D has polynomial growth (on D) if and only if g has polynomial growth on B.

Proof. If g is a polynomial-growth function, then g has polynomial growth on B by
Lemma 2.2(2). We now prove the converse. Suppose g has polynomial growth on B.
The set

S={W c A: ghas polynomial growth on W U B}

is non-empty because @ € S. Furthermore, S is finite because it is a subset of the finite
power set 24. Suppose V € S —{A},so0V c A4, i.e., there exists a € A — V. The
function g has polynomial growth on IV U B because V € §. Corollary 2.26 implies g has
polynomial growth on V U B U {a}. ThenV U {a} € S since V U {a} € A.

The set S is partially ordered by set containment (€). Since S is finite and non-empty, S
must contain a maximal element A* relative to set containment. We demonstrated that all
elements of S other than A are non-maximal. Therefore, A* = A, which implies A € S,
i.e., g has polynomial growth on the set D = A U B. O

Corollary 2.29. Positive functions on finite, positive sets have polynomial growth.
Proof. Let g be a positive function on a finite, positive set D. Observe that D = D U Q.
The restriction of g to the empty set has polynomial growth by Lemma 2.3. Corollary

2.28 implies g is a polynomial-growth function. (The proposition also follows directly
from Corollary 2.13.) 0

52



2. Polynomial Growth

Corollary 2.30. If g is a polynomial-growth function and S is a positive set containing
the domain of g, then g can be extended to a polynomial-growth function on S.

Proof. By Lemma 2.3, the identically zero function z on S has polynomial growth. If g
is identically zero, then z is an extension of g. Therefore, we may assume g is not
identically zero. By Lemma 2.2(5), g can be extended to a polynomial-growth function h
on some positive, unbounded interval I containing the domain, D, of g. The function h is
not identically zero because g is not identically zero. Lemma 2.7 implies h is positive.

Define a function f on (0,) by f|; = hand f(x) = 1 forall x € (0,0) — I, so f has
polynomial growth on I. Lemma 2.3 implies f has polynomial growth on (0, c0) — I.
The function f is positive, and I is an upper subset of (0, o). Furthermore, the domain
of f is the union of I and (0, ) — I. Lemma 2.24 implies f has polynomial growth. By
hypothesis, S is a positive set, i.e., S € (0,0) = domain(f). The restriction of f to S
has polynomial growth by Lemma 2.2(2) and is an extension of g to S because

(fI)lp =flo = (fIDlp = hlp = g

The simple observation below further illustrates the connection between Leighton’s
polynomial-growth condition and our definition of polynomial growth:

Corollary 2.31. If g is a polynomial-growth function and S is a non-empty, finite subset
of (0,1), then g can be extended to a polynomial-growth function that satisfies
Leighton’s polynomial-growth condition relative to S.

Proof. Corollary 2.30 implies g can be extended to a polynomial-growth function h on
the interval (0, ), which contains [min S, ). Lemma 2.2(1) implies h is non-negative,
so h is a candidate for Leighton’s polynomial-growth condition relative to S. By Lemma
2.2(2), h has polynomial growth on [min S, ). Corollary 2.17 implies g satisfies
Leighton’s polynomial-growth condition relative to S. O

Polynomial growth is preserved by ©-equivalence of sufficiently nice positive functions:

Lemma 2.32. Suppose g = @(h), where g is a real-valued function on a positive,
unbounded set, and h is a positive polynomial-growth function. If g is locally ©(1), then
g has polynomial growth. The converse is true if domain(g) has a positive lower
bound.

Proof. Since g = ©(h), there exists a positive, unbounded interval I and a, B € R* such
that
@+DCE
and
ah(x) < g(x) < Bh(x)
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for all x € D, where D = domain(g) NI and E = domain(h) N I. Positivity of h
implies positivity of g|p. Let a = min(a, 1) and b = max(f,1),sothat0 <a <1<b
and

ah(x) < ah(x) < g(x) < Bh(x) < bh(x)

for all x € D. By Lemma 2.2(2) and Corollary 2.30, the restriction of h to E has
polynomial growth and can be extended to a polynomial-growth function h* on I. Since
h is positive and E # @, we conclude that h* is not identically zero. Lemma 2.7 implies
h* is positive. Since D € E, the function h* agrees with h on D. Let g* be the function
on [ that agrees with g on D and agrees with h* on I — D. Positivity of g|, and h*
implies g* is positive. Furthermore,

ah*(v) = ah(v) < g(v) = g"(v) = g(v) < bh(v) = bh*(v)
forallv € D. Sincea <1 < b, we have
ah*(w) = ag*(w) < g*(w) < bg*(w) = bh*(w)
forallw € I — D. Therefore,
ah*(t) < g*(t) < bh*(t)

forall t € I. Lemmas 2.10(1) and 2.16 imply
. b _ b
Y, (g*) = sup Ratios,(g*) < 7 (sup Ratios, (h*)) = o Y,(h*) < o

and g* has polynomial growth. Since g|p, = g*|p, Lemma 2.2(2) implies g|p has
polynomial growth.

Suppose g is locally ©(1), so g is a positive function. Define § = domain(g) — D, so S
is bounded below by zero. Furthermore, S is bounded above because D is a non-empty
upper subset of domain(g). Therefore, g is ©(1) on S, so Corollary 2.13 implies g has
polynomial growth on S. Since g has polynomial growth on S and D, Lemma 2.24
implies g is a polynomial-growth function.

Conditional converse: Suppose g has polynomial growth and inf domain(g) > 0.
Since g|p is positive and D # @, the function g is not identically zero. Lemma 2.7
implies g is positive. Then g is locally ©(1) by Corollary 2.22. O
Example. Define the positive function g(x) = x + sinx on (2, ), so

x—1<gx)<x+1.

If S € (2, ) is bounded, then
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1<infS—-1<g() <supS+1

forallt € S,i.e., g|s = ©(1). Thus g is locally @(1). Let h be the identity function,
h(x) = x, on (2,00). Corollary 2.12 implies h has polynomial growth. Since g = @(h),
Lemma 2.32 implies g has polynomial growth. Of course, polynomial growth of g also

follows from

W, (g) < 2x + 1 I 2x +1 E <
= = CO,
2 =TT T a1

Asymptotic polynomial growth does not imply polynomial growth. Let h be a
positive polynomial-growth function on (1, ). Define a function g on (1, ©) by
g(x) = h(x) forx > 2,and g(x) = 1/(x — 1) for 1 < x < 2. The function g is
unbounded above on the bounded interval (1,2), so g is not locally ©(1). Although
g = 0(h), Lemma 2.32 implies g is not a polynomial-growth function. However,
Lemma 2.32 implies g has polynomial growth on each subset of (1, ) that does not
have 1 in its closure.

0(0). Lemmas 2.3 and 2.7 imply a polynomial growth function g on an unbounded set
satisfies g = ©(0) if and only if g is identically zero.

Lemma 2.32 has a particularly simple interpretation for continuous functions on positive,
unbounded, closed intervals:

Corollary 2.33. If g is a continuous real-valued function on [c, ) for some ¢ > 0, and
g = 0(h) for some positive polynomial-growth function h, then g has polynomial
growth if and only if g is positive.

Proof. Tt follows from g = @(h) and positivity of h that g is not identically zero. If g
has polynomial growth, then g is positive by Lemma 2.7.

We now prove the converse. Suppose g is positive. IfS is a bounded subset of the
closed set [c, o), then the closure S of S is also a bounded subset of [c, ). Continuity of
g implies the restriction of g to S has a minimum L and maximum U. We have L > 0
and U < oo since g is a positive real-valued function. Since S € S, The quantities L and
U are a lower and upper bound, respectively, for the restriction of g to S. Therefore, g is
©(1) on S. We conclude that g is locally ©(1). Lemma 2.32 implies g has polynomial
growth. O

Examples of domain requirements. The positive, continuous function f(x) = x — 1 on
(1, o) satisfies f(x) = O(x). As explained after Lemma 2.19, f is not a polynomial-
growth function. Corollary 2.33 is inapplicable to f because the domain of f is (1, o).
However, Corollary 2.33 implies the restriction of f to [c, ©) has polynomial growth for
allc > 1.

The positive, continuous function g on (0, ) defined by
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1/x

g(x)z{ e , fOI‘XSl
x+e—1, forx>1

satisfies g(x) = ©(x). Corollary 2.33 is inapplicable to g because the domain is (0, o).

We have
1/x

e
W, : T 1/x —
2(9) = xl_)1r51+ el/(2x) x1—>1r(§1+ € o

so W,(g) = . Lemma 2.16 implies g does not have polynomial growth. However,
Corollary 2.33 implies g has polynomial growth on [c, o) for all ¢ > 0.

The polynomial growth functions h(x) = x and k(x) = 1/x on (0, o) trivially satisfy
h(x) = O(x) and k(x) = 0(1/x). Since (0, o) is the domain of h and k, we cannot
conclude from Lemma 2.32 that h and k are locally ©(1). Indeed, they are not (1) on
the bounded set (0,1).

We now show that polynomial growth has something to do with polynomials:

Lemma 2.34. If f is a positive polynomial-growth function and domain(f) has a
positive lower bound, then there exists a non-negative integer n and positive real
numbers a and 8 such that

ax™™ < f(x) < Bx™.
for all x € domain(f).

Proof. The assertion is vacuously satisfied by the empty function witha = =n =1,
so we may assume f is non-empty. Let ¢ = inf domain(f), so 0 < ¢ < o and
domain(f) € [c,). By Corollary 2.30, the function f can be extended to a
polynomial-growth function g on [c, ). Let b > 1 be a real number. Lemmas 2.10(2)
and 2.16 imply

1=¥,(g) <o,

SO logb(‘Pb (g)) is a non-negative real number. Define the non-negative integer

n = [log, (¥, ()],

)
Wp(g) < b™.
Let
J— Cn
“= ¥, (g) 9()
and
v
p="29 5c)

It follows from W, (g) > 1 that
ac™™ < g(c) < Bc™.
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Now let x > ¢, and define the positive integer

L = [log,(x/c)l,

SO
X
bt = -

> 1.

Therefore, ¥, .(g) and ¥, ,.(g) are defined. Observe that

L <1+log,(x/c),

so parts (2), (6) and (8) of Lemmas 2.10 imply

L logp(x/c) .
We(@) S W,L(9) < (¥(9) < W(9)(W(9) 277 < W, (g) - brlosx/),
which implies
X n
Yere@) < ¥ (9) (3) -

Lemma 2.10(4) combines with the inequality above to imply

= ZE () <29 <ty iexD < g

YW T W(9)
and
X n
Bx = Wy(9) (3) 9(0) = Wise(9)g(@) = sup g(le,x]) = g(x).
The lemma follows because g is an extension of f. O

For convenience, we identify a trivial consequence of Lemma 2.34 that includes
indentically zero functions:

Corollary 2.35. If g is polynomial-growth function and domain(g) has a positive lower
bound, then there exists a non-negative integer n and a positive real number £ such that

g(x) < px™
for all x € domain(g).

Proof. If g is positive, Lemma 2.34 implies the existence of f and n. Suppose g is not
positive, so g is identically zero by Lemma 2.7. Since g has a positive domain, the
conclusion is satisfied by every choice of n and . (The assumption that

inf domain(g) > 0 is unnecessary when g is identically zero.) O
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Of course, Corollary 2.35 does not include a lower bound for g(x) of the type provided
by Lemma 2.34. Identically zero functions on non-empty positive sets have polynomial
growth but are not bounded below by ax* for any combination of « € R* and k € Z.

Counterexamples on (0, ). The positive functions x and 1/x on (0, ) have
polynomial growth by Corollary 2.12. There are no choices of @, € R* and m,n € N
for which either ax™™ < x for all x € (0,) or 1/x < Sx™ for all x € (0, ).
(Consider the limits as x = 0.) Lemma 2.34 is inapplicable because (0, o) has no
positive lower bound.

Power bounds do not imply polynomial growth. The obvious converse to Lemma 2.34
for positive functions on real sets with positive lower bounds is false. Define the real-
valued function h on (0, ) by

1 1 1
h(x) =;+E<x—;) (1 + sinx).

Let] =[1,) and f = h|;, so

1. <
;_f(x)_x

forallx € l. Ifk € Z* andw = 2k + 1/2)w, thenw € [ and w + 7 € [w, 2w].
Observe that f(w) = w and f(w + m) = 1/(w + m). The function f is positive, so
W, (f) is defined. Furthermore,

fw)

— 2 Ak272
v+ ww + 1) > w? > 4k

Y, (f) =

for all k. Therefore, W, (f) = o0, so Lemma 2.16 implies f does not have polynomial
growth.

The positive function f is a counterexample to the converse of Lemma 2.34, but f is not
a candidate for Leighton’s polynomial-growth condition; the domain of f is
incompatible. We now provide two related counterexamples that are candidates for
Leighton’s polynomial-growth condition relative to some non-empty finite subsets of
(0,1) but do not satisfy Leighton’s polynomial-growth condition relative to any such
subset.

Define continuous real-valued functions p and q on (0, ) by p(x) = x - h(x) and
q(x) = h(x)/x. Continuity of p and q along with q(x) <1 < p(x) forall x > 1
implies there exists f € (0,1) such that q(x) < 2 and p(x) = 1/2 forall x > . Let h*
be the restriction of h to [, ), so

1
— < h*(x) < 2x
2x
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for all x € [B, ). In particular, h* is a positive function. Thus h* is a candidate for
Leighton’s polynomial-growth condition relative to {8}. Since

h'l; = (hligey)li = hl = f

does not have polynomial growth, Lemma 2.2(8) implies h* does not satisfy Leighton’s
polynomial-growth condition relative to any set.

Now let S be any non-empty, finite subset of the interval (0,1). Let ¢ = min S and

b = 1/c, so bx is in the domain, [1, ), of f for all x in [c, ). We define the function
G:[c,) - RT by G(x) = f(bx). The function f is positive, so G is also a positive
function. Thus G is a candidate for Leighton’s polynomial-growth condition relative to
the set S. Furthermore,

c 1 < Fbx) < b
x_bx_f X) = DX
for all x € [c, ), i.e.,
;SG(x)be

for all such x. Since
Ratios,(G) = Ratios,(f),
Lemma 2.10(1) implies
¥, (G) = W, (f) = co.

Lemma 2.16 implies G is not a polynomial-growth function. The function G is
continuous, so Lemma 2.14 implies G has polynomial growth on the lower subset [c, 1]
of [c, ). Since

[c,0) = [c,1] U [1, =),

Lemma 2.24 implies G does not have polynomial growth on [1, ). By Lemma 2.2(8),

the function G does not satisfy Leighton’s polynomial-growth condition relative to any
set.
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3. Non-Polynomial-Growth Functions g
With Polynomial-Bounded |g'(x)]

In [Le], the statement of Theorem 1 is accompanied by the following remark: “If |g'(x)|
is upper bounded by a polynomial in x, then g(x) satisfies the polynomial growth
condition.” The assertion is incorrect even if we adopt the unstated condition that g is a
differentiable candidate for Leighton’s polynomial-growth condition. This section
supplies four classes of counterexamples: non-constant functions with roots, functions
that rapidly approach zero at infinity, functions with large oscillations, and positive
increasing functions with long intervals of contrasting growth rates.

From each class of counterexamples, we exhibit a representative non-negative,
differentiable, real-valued function g on the positive real numbers. Like every other non-
negative function on the positive real numbers, each g is a candidate for Leighton’s
polynomial-growth condition relative to every non-empty, finite subset of (0,1).
However, each representative g fails to satisfy Leighton’s polynomial-growth condition
relative to any set. Representatives of two classes satisfy |g'(x)| < x + 1, and a
representative of another satisfies |g’'(x)| < 1. For all € > 0, there is a representative of
the fourth class with |g'(x)| < e.

Polynomial upper bound on a candidate. Let g be a differentiable, non-negative, real-
valued function on [min S, o) where S is a non-empty finite subset of (0,1). In
particular, the function g is a candidate relative to S. Suppose g’ is locally Riemann
integrable. If |g’| is bounded above by a polynomial, then g’ is bounded above by the
same polynomial. Integration yields a polynomial upper bound for g. However, as we
demonstrated near the end of Section 2, the existence of a polynomial upper bound for a
candidate does not imply satisfaction of Leighton’s polynomial-growth condition.

Polynomial growth of g does not imply polynomial bound for |g’|. Before providing
counterexamples to Leighton’s remark, we consider the converse. Does satisfaction of
Leighton’s polynomial-growth condition by a differentiable function g imply |g’| is
bounded above by a polynomial? No, it does not. Define g: Rt — R* by

g(x) =2 + sin(e”),

60



3. Non-Polynomial-Growth Functions g With Polynomial-Bounded |g’(x)|

SO
¥,(g) = 3.

Lemma 2.16 implies polynomial growth of g. Corollary 2.17 and Lemma 2.2(2) imply g
satisfies Leighton’s polynomial-growth condition relative to every non-empty, finite
subset of (0,1). However,
lg'(x)| = e*|cos e*|.
Observe that
e*|cose*| = e*

whenever e* /7 is an integer. Since e*/m is continuous and approaches oo as x
approaches oo, the solutions of

g’ (x)]| = e*
form an unbounded set. Therefore, |g'(x)| is not bounded above by a polynomial.

Non-constant functions with roots. Suppose g: Rt — R is a non-negative function with
aroot in [1, ) such that the restriction of g to [1, ) is not identically zero. By Lemma
2.7, the function g does not have polynomial growth on [1, ). Lemma 2.2(8) implies g
does not satisfy Leighton’s polynomial-growth condition relative to any set. There exist
many such g that are infinitely differentiable with |g'(x)| bounded above by a
polynomial.

For example, define the non-negative function g: R* — R (with unique root 1) by

90 =5 (x — 17,
SO
g'(x)=x-1,

which combines with x > 0 to imply
lg'(x)| <x+1.

A related non-counterexample. We now consider a slightly different example (with no
roots) that violates our definition of polynomial growth. Lemma 2.19 implies the
positive function g(x) = x — L on (L, ©), where L is a positive real number, does not
have polynomial growth although g’ (x) = 1 is a constant polynomial. However, g
should not be considered a counterexample to Leighton’s remark. If L > 1, then g is not
a candidate for Leighton’s polynomial-growth condition. Suppose L < 1, so (L, 1) is
non-empty. Let S be a non-empty, finite subset of (L, 1), so minS > L. The restriction
of g to [min S, 0) is positive. Since g is continuous and g(x) = @(x), Corollaries 2.12
and 2.33 implies g has polynomial growth on [min S, ©). By Corollary 2.17, the
function g satisfies Leighton’s polynomial-growth condition relative to S.
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Functions that rapidly approach zero at infinity. Define the positive, infinitely
differentiable real-valued function g: R —» R* by g(x) = e™™. The reciprocal function
1/g(x) = e* is not bounded above by a polynomial on [1, ), so Corollaries 2.15 and
2.35 imply g does not have polynomial growth on [1,00). Lemma 2.2(8) implies g does
not satisfy Leighton’s polynomial-growth condition relative to any set. However,

g’ =e™* <1

for all x in R*, the domain of g. Therefore, |g'(x)| is bounded above by a constant, i.e., a
degree zero polynomial, and g is another counterexample.

The following proposition is used later by a couple of our examples.

Lemma 3.1. Suppose f:[1,00) = R* is continuous and does not have polynomial
growth. Define g: Rt - R by g(x) = f(x + 1). The function g does not satisfy
Leighton’s polynomial-growth condition relative to any set.

Proof. The interval [1,2] is a lower subset of domain(f) = [1,2] U [2, ), which is a
positive set. The function f is positive and continuous, so the restriction of f to the
positive compact interval [1,2] is also positive and continuous. Corollary 2.14 implies f
has polynomial growth on [1,2]. Let f* be the restriction of f to [2, ). Since f is
positive and does not have polynomial growth, we conclude from Lemma 2.24 that f*
does not have polynomial growth.

Let g* be the restriction of g to [1, ). Forall x € [2, ), we have
[x,2x] € [x,3x—2] =[(x—1)+1,3(x — 1) + 1].
Lemma 2.9(5) implies
Ap([x,2x]) < Ap+([x,3x — 2]) = Ag+([(x — 1),3(x — D] < ¥3(g"),
SO
W, (") < W¥5(g").
W, (f*) = oo,

Y3(g*) = oo.

Lemma 2.16 implies

SO

Lemma 2.16 implies g* does not have polynomial growth. Lemma 2.2(8) implies g does
not satisfy Leighton’s polynomial-growth condition relative to any set. O

Of course, the function g of Lemma 3.1 is a candidate for Leighton’s polynomial-growth
condition relative to each non-empty, finite subset of (0,1).

62



3. Non-Polynomial-Growth Functions g With Polynomial-Bounded |g’(x)|

Domain, positivity, and continuity in Lemma 3.1. Define f:[1,00) — R and

g:R* > R*by f(x) =x —1and g(x) = f(x + 1) = x. Since 1 is the unique root

of f, the function f is neither positive nor identically zero. Lemma 2.7 implies f does
not have polynomial growth. However, the function g has polynomial growth by
Corollary 2.12. Lemma 2.2(2) and Corollary 2.17 imply g satisfies Leighton’s
polynomial-growth condition relative to every non-empty, finite subset of (0,1).
Although f is continuous, Lemma 3.1 is inapplicable because f is not a positive function.

What happens if we delete the root, 1, from the domain of f? Define f:(1,) - R* and
g:R* > R by f(x) =x—1and g(x) = f(x + 1) = x. As explained earlier, Lemma
2.19 implies f does not have polynomial growth. As before, g has polynomial growth by
Corollary 2.12 and satisfies Leighton’s polynomial-growth condition relative to every
non-empty, finite subset of (0,1). Although f is positive and continuous, Lemma 3.1 is
inapplicable because the domain of f is (1, ) instead of [1,0). (Lemma 3.1 remains
true if domain(f) = [c,) and g(x) = f(x + ¢) for some ¢ > 0.)

Now instead define f:[1,0) - RT by f(1) = 1and f(x) = 1/(x — 1), so f(x)
approaches oo as x approaches 1. Lemma 2.19 implies f does not have polynomial
growth. As before, define g: R* - R by g(x) = f(x + 1), s0 g(x) = 1/x. Corollary
2.12 implies g has polynomial growth. Lemma 2.2(2) and Corollary 2.17 imply g
satisfies Leighton’s polynomial-growth condition relative to every non-empty, finite
subset of (0,1). Although f is positive, Lemma 3.1 is inapplicable because f is not
continuous at 1.

Functions with large oscillations. Near the end of Section 2, we a defined positive,
infinitely differentiable functions f:[1,) —» R* by

1 1 1
f(x) =;+§<x—;) (1 + sinx)

and showed that f does not have polynomial growth. Define the positive, infinitely
differentiable function g: R* —» R* by

gx) = fx+1).

Lemma 3.1 implies g does not satisfy Leighton’s polynomial-growth condition relative to
any set. We claim

If' ()] < x
for all x € [1, ), so
g’ =1f'(x+ D <x+1

for all x € R*. The derivative of f is

’()—_1+1<1+1)(1+' )+1< 1)
f'(x =2z 13 2 sinx) + >\ x ——Jcosx.
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Observe that f'(1) =sinland 0 < 1 <g,so 0<sinl<1,ie |f'(D|=f'(1)<1.
Now suppose x > 1, s0 x > 1/x. At most one of sinx and cos x equals 1, so

x> +2x—1 (x —1)?
T o x-—L <«

f’(x)<1+l<x_§)= 2x T Tk

2

At most one of sin x and cos x equals —1, so

x34x-2

2x2 >0,

, -1 11
f (x)+x >x—2+5<;—x)+x =
i.e., f'(x) > —x. Therefore, |f'(x)| < x as claimed, and g is a counterexample to

Leighton’s remark.

Positive, increasing functions with long intervals of contrasting growth rates. We
claim that for all € > 0, there exists a corresponding positive, increasing, continuously
differentiable function g: RT — R™ that satisfies |g'(x)| = g'(x) < & for all x € R* but
does not satisfy Leighton’s polynomial-growth condition relative to any set. Observe that
€ is a zero-degree polynomial upper bound for |g’(x)], so g is another counterexample.

Let € > 0. We construct g by splicing together linear and quadratic polynomial
functions defined on intervals. The quadratic segments will be defined as follows: If a,
b, ¢, and d are real numbers, then the function f: [c, ¢ + 1] —» R defined by

b —

Za(x—c)2+a(x—c)+d

f&) =

is the unique polynomial function on [c, ¢ + 1] with real coefficients and degree at most
two that satisfies f'(¢) = a, f'(c + 1) = b, and f(c) = d. The function f is of course
continuously differentiable. The derivative f’ is monotonic because its degree is at most
one, SO

min(a, b) < f'(x) < max(a, b)

forall x € [c,c + 1]. If a and b are positive, then f' is positive and f is increasing; if d
is also positive, then f is positive. Observe that

f(c+1)=d+(a;b)

< d + max(a, b).

We inductively define an increasing sequence x, X1, X5, ... of positive real numbers by
Xo = 1 and

— p2xpt+1
Xny1 = €770
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for each non-negative integer n. Observe that x — log x — 1 has the root 1 and has a
positive derivative on (1, ), which implies x —logx > 1 for all x > 1. Positivity of x,,
implies x,,1 > 1, so

Xns1 > logxpq +1 =2x, + 2.

Let 6 = min(e/2,1/2). Another sequence By, By, B, ... of positive real numbers is
defined by
é

)
Xny1 — 108 X514

Bn =
so B, < 6 and

1 1
< < .
'Bn 2(xn+1 - 1ngn+1) 2(xn+1 - logxn+1 - 1)

Define a sequence of intervals I, I;, I, ... in (0, ) by

[ = { (0,01, forn=0
an [x, — 1, x,], forn > 0,

Iyns1 = [xnl an]r

Iynyr = [an, 2%, + 1] = [anrlogxn+1];
and
Iynss = [an + 1, %041 — 1] = [logxn+1 yXn+1 — 1]

(0,00) = le.
k=0

Each interval I}, has positive length, and max I, = min [, ;. We now recursively define
a sequence hg, hq, h,, ... of positive, increasing, continuously differentiable functions with
hy: I, > R* for each non-negative integer k. Let n be a non-negative integer. If n = 0,
then hy, (x) = hy(x) = 8x for all x € I,; otherwise, let h,,, be the quadratic function
determined by hy, (x, — 1) = Bn_1, h4n(x,) = &, and

for each non-negative integer n, so

h4n(xn - 1) = h4—n—1(xn - 1)-

h4n+1(x) = h4n(xn) +0(x — xn)-

Define h4n+1 by

The function hy,,,, is the quadratic function determined by hy,,,,(2x,) = 6,
hin+2(2xn, + 1) = By, and

h4n+2(2xn) = h4—n+1(2xn)-

The function hy,, 3 is defined by
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h4n+3(x) = h4n+2(2xn +1) + .Bn(x —2x, — 1).
Since
hy(max ) = hyq(max Iy)

for each non-negative integer k, there exists exactly one function g on (0, o) such that
g1, = hy for all such k. The function g is positive and increasing because each hy, is

positive and increasing. Furthermore, g is continuously differentiable because each hy, is
continuously differentiable with

hy(max I,) = hy ., (maxI}).

The derivative g’ is a positive function, and each derivative h; is monotonic, so

sup |g'(x)| = sup )g’(x) = sup (Sup(hfc(x))> = max (5, iligﬁk) =§<e.

x€(0,00) x€(0,00 k=0 \x€Ilg

Since g(t) = 6t forall t € (0, 1], we conclude that g(x) < 8x for all x € (0, ).
If n > 0, then

g(xn - 1) = g(Ingn) + .Bn—l(xn - logxn - 1) < Slogxn + 1/2;

glxy) <glx,—1)+ 6 <6blogx, +1,
and

g(2x,) _ g(x,) + 8xy, 6xy,

9(x,) g(x,) Slogx, +1°

It follows from

lim x,, = oo
n—->oo

and
Y ot
rowslogt +1 ®
that
9(2x,)
= 00

m =
n—oo g(xn)

The interval [1, ) contains each x,,, so

¥, (g | [1,00)) = oo.
Lemma 2.16 implies g does not have polynomial growth on [1, ). By Lemma 2.2(8),
the function g does not satisfy Leighton’s polynomial-growth condition relative to any

non-empty finite subset of (0,1).

A positive, increasing counterexample based on the error function. Just for fun, we
construct another counterexample to Leighton’s remark about derivatives and his
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polynomial-growth condition. In Theorem 3.6, we shall construct a positive, increasing,
continuously differentiable, real-valued function f on [1, c0) that satisfies

"Gl =f"(x) <x
for all x € [1, o) but does not have polynomial growth.
Define a positive, increasing, continuously differentiable function g: R - R™ by

g(x) = f(x +1). Lemma 3.1 implies g does not satisfy Leighton’s polynomial-growth
condition relative to any set. Observe that

g’ =9'Cx) =f"(x+1) <x+1
for all x in the domain of g.

P and E. Unlike the earlier positive, increasing counterexample that is pieced together
from linear and quadratic polynomials, the functions f and g are based on the error

function, which is defined by
erf(x) = —j e tdt
v Jo

for each real number x. Define the functions

P(x,y) = %e‘(x‘y)z

and

E(x,y) = gy-(erf(x -y +1)

on the real plane. They are related by

J0E
o=
Ify > 0, then
0<P(x,y) S%
and
0<E(x,y) <gy<%

for all x. The equality P(x,y) = % holds if and only if x = y. Likewise, E(x,y) = %y
if and only if x = y. For each real number y, we have

limP(x,y) = 0.
X—00
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For each real number x, we have
limP(x,y) =0
y—co

and
limE(x,y) = 0.
y—00

Furthermore,
limE(x, 2x) = 0.
X—00

The second and third limits above follow from L’Hopital’s rule, and the fourth limit
follows from the third: For all real x, we have

1
lim A = lim

y—00 e(x—J’)z y—00 Z(y — x)e(x—Y)z =0

which implies
lim P(x,y) = 0.
y—00

Similarly,
_ Voo erfx—y)+1 y?
- Jim EGoy) = 5 Jim ——5—— = lim o5
. y . . y
= lim =<11rn )(hm—)=0-0=0,
y—00 (y —_ x)e(x—J/)z y—0o (y — x) y—co e(x—.'Y)Z

SO
lim E(x,y) = 0.
y—00

Finally,

lim E(x,2x) =2 lim E(0,x) = 0.
X—00

X—00

Lemma 3.2. P(x,y) < x — forallx,y in [1,0).

Proof. Let x > 1, and define the function h(y) = P(x,y) on [1, ), so that

1 2
h'(y) = Ze‘(x‘” Qyx—y) +1).
Since

1
Zp—(x-y)? >0
43

for all real y, a real number u is a critical point of h if and only if u is contained in
domain(h), and u is one of the roots

W=%(x+ x2+2)
or

W*=%(x— x2+2)
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of the quadratic equation

2y(x—y)+1=0.
Observe that

1<x<w<x+1.

In particular, w € domain(h), whereas w* < 0, which implies w* € domain(h). Thus
w is the unique critical point of h. Since h(1) > 0 and

lim h(y) =0,
y—co

there exists t > 1 with h(u) < h(1) for all u = t. Continuity of h implies there exists
m € [1, t] such that h(m) > h(z) for all z € [1, t]. Exactly one of the following
conditions is satisfied for any such m:

(1) m is a critical point of h, i.e., m = w.
2ym=1and h'(1) < 0.
(3)m=tandh'(t) > 0.

Condition (2) is violated because h'(1) > 0. The inequalities h(t) < h(1) < h(m)
imply m # t, i.e., condition (3) is violated. Therefore (1) is satisfied, i.e., m = w.
Furthermore,

h(w) > h(1) > h(u)

for all u > t. We conclude that h(w) is the maximum value of the function h. For all y
in [1,00), we have

p( ) < P( )<w<x+1< 1
x,y) < X, w Z 7 < x >

Definition. For each real number y > 1 and each positive integer n, let

Aly,n) =B(y,n)uC(y,n)
where

1
B(y,n) = {x € [1,0): P(x,y) = 2n+1}
and

1
Cly,n) = {x € [1,y]: E(x,y) = 2n+2}.

Lemma 3.3. If y > 1 is a real number and n is a positive integer, then A(y,n) is a
closed and bounded subinterval of [1, ) containing y.

Proof. Let A = A(y,n), B = B(y,n),and C = C(y,n). By definition, B is contained in

[1, ), and C is contained in [1, y], which is contained in [1, ). Therefore, the union A
of B and C is also contained in [1,00). The relations
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1 T 1 1
and E(y,y) =%y>—>

2 8 - 2n+2

P(y,y) =

imply y is an element of B and C and is therefore also an element of A = B U C.

Define the functions P,: R —» R and E,: R —» R by P,(x) = P(x,y) and E,,(x) = E(x,y).
The set B is the intersection of the closed set [1, o) and the closed preimage of the closed
set [1/2™*1, c0) under the continuous function P,. The set C is the intersection of the

closed interval [1,y] and the closed preimage of the closed set [1/2™*2, ) under the
continuous function E,,. Therefore, B, C, and A = B U C are closed subsets of the real
numbers.

The sets C and B N [1, y] are connected because E,, and the restriction of P, to [1,y] are
increasing. The set B N [y, ©) is connected because the restriction of P, to [y, o) is

decreasing. B is connected because it is the union of non-disjoint connected sets

B N[1,y] and B N [y, ). (They both contain y.) The set A is connected because it is
the union of non-disjoint connected sets B and C. (They both contain y.) In other words,
A is an interval.

By definition, the set B is bounded below by 1. B is bounded above because

lim P, (x) = 0.

X— 00
C is bounded because it is contained in the bounded interval [1, y]. A is bounded because
it is the union of the bounded sets B and C. O
It can be easily shown that A(y,n) is the degenerate interval [y, y] if and only if
y =n = 1. However, we shall not need this fact.
Lemma 3.4. For each real number ¢ > 1 and each positive integer n, there exists a real
number w > ¢ such that A(c,n) and A(d,n + 1) are disjoint for each real number d
satisfying d > w.
Proof. Lemma 3.3 implies A(c,n) has a maximum element u. The limits

lim P(u,y) =0 and lim E(u,y) =0
y—)OO y—>oo

imply there exists w > u such that P(u,d) < 2n1+2 and E(u,d) < 2n1+3 foralld > w, so

u & A(d,n+ 1) for all such d. By Lemma 3.3, A(d,n + 1) is a closed and bounded
interval containing d. The conditions u € A(d,n + 1) and

u<w<deAldn+1)
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imply u < min(A(d, n+ 1)). Therefore, A(c,n) and A(d,n + 1) are disjoint. O

Lemma 3.5. There exists an infinite sequence a4, a,, as, ... in [1, ) such that

2

n
Apy1 = (Z al-) +1

i=1
and
max(A(an, n)) < min(A(an+1,n + 1))
forallne Z*.

Proof. We provide an inductive definition of such a sequence. Let a; be any element of
[1,0). Given a positive integer n, and the partial sequence a; ... a,, Lemma 3.4 implies
there exists w > a,, such that A(a,, n) and A(d,n + 1) are disjoint for each real number
d=>w.

Define

n 2
Apyqp = mMax| w, (Z al-) +1),

i=1

SO a, 4 satisfies the first required inequality. Furthermore, A(a,, n) and A(a,;,n+ 1)
are disjoint. By Lemma 3.3, A(a,, n) and A(a,;q,n + 1) are closed and bounded
intervals containing a,, and a,,,, respectively. We conclude from a,, < a, 4, that

max(A(an, n)) < min(A(an+1,n + 1)).

We are now ready to construct the promised function f:

Theorem 3.6. Let a,,a,, as, ... be as in Lemma 3.5, and define a sequence f3, f5, f3, ... of
real-valued functions on [1, o) by £, (x) = E(x, a,). The series Y. f,, converges
pointwise to a positive, increasing, continuously differentiable function f on [1, ) such
that 0 < f'(x) < x for all x € [1,00). The function f does not have polynomial growth.

Proof. Define functions py, py, p3, ... on [1,00) by p,,(t) = P(t,a,). Let x € [1, ).
The functions f, and p,, are positive, so the series ), f,,(x) and Y. p,,(x) either converge to
positive real numbers, or diverge to +o.

Define A,, = A(a,, n) for each positive integer n. By Lemma 3.3, 4,, is a closed and
bounded subinterval of [1, ) containing a,,. Since the increasing sequence a,, a,, s, ...
approaches infinity and a,, < max 4,, < min 4,,,, the increasing sequence

min A, ,min4,,min4;, ...
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also approaches infinity.

Let k be the least non-negative integer for which x < min Ay, 4, so x lies outside 4,, for
each positive integer n # k. For all n > k, we have x < min(4,,) < a,,, which
combines with x & C(a,, n) € A,, to imply f,,(x) < 1/2™*2. For each positive integer
n, the inequality f,,(x) < a, /2 holds. If k = 0, then

QA < ) gm = g <
n=1 n=1

If k > 0, then

9] k o

n 1 A+1 1
an(x) < 27+ z o < R4 <
n=1 n=1

n=k+1
Hence ). f,, converges pointwise to a positive real-valued function f.
If k < 1, define v = 1; otherwise,

max(4,_,) < min(4;) < x,

and we define
max(Ay_,) + min(A4)
v= 3 :

Let

x + min(Ay 1)
w = 5 ,

and define the closed interval /| = [v, w], which is disjoint from A,, for each positive
integer n # k. Observe that | has positive length, and x € | € [1, ). Furthermore, x is
in the interior of J if x # 1.

Let z be any element of /. If k = 0, then

an(z) < ZZ”“ =E<Z'
n=1 n=1

If k > 0, it follows from Lemma 3.2 that

z pn(2) < pe(2)+ z on+l < (Z - 5) + 5 = Z.
n=1

n+k

In particular, ). p,,(x) converges to a real number less than x. Hence ), p,, converges
pointwise to a positive function p, and p(x) < x. Convergence is uniform on J since
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Z Pn(2) < Z 2n+1 ~ om
n=m n=m

for each integer m > k, and 2™™ approaches zero as m approaches infinity. (The series
does not converge uniformly on [1, ).)

Uniform convergence of Y, p,, on ] combines with continuity of each p,, to imply
continuity of p|;. In particular, p|; is continuous at x. Either x is in the interior of /, or
x = 1. Recall that ] has positive length. Hence ] contains the intersection of [1, ) with
some open interval containing x. (The open interval is not contained in [1, ) if x = 1.)
Therefore, continuity of p at x follows from continuity of p|; at x. Thus p is continuous.

The identity Z—i = P implies the derivative of f,, is p,, for all n. Pointwise convergence of
Y. f» to f combines with the uniform convergence of ). p,, on J to imply that the
restriction of f to J is differentiable, and its derivative is the restriction of p to /. See, for
example, Theorem 7.17 of [Ru]. If x # 1, then x is an interior point of /, so that f is
differentiable at x, and f'(x) = p(x). If x = 1, then v = 1, and the restriction of f to J
has a one sided derivative at 1 given by

(f1)) O = pD);
furthermore, f has a one sided derivative at 1, and f'(1) = p(1). Thus f’ = p, which
implies

0<f'(x)<x.

Since p is positive and continuous, the function f is increasing and continuously
differentiable.

Ifn > 1is an integer, then a,, > a, > a;> + 1> 2,

Vr

f(an) > fn(an) = E(an: an) = ?an:

a?’l .
1< > <min4, 1,

It follows from

—
I
(e}

. . aTl
lim a, = o and limE (—,an
n—-0o n—-oo 2

that

73



3. Non-Polynomial-Growth Functions g With Polynomial-Bounded |g’(x)|

T
. f(an) . 8 an . Tan
lim ——— > lim = lim = oo,
n—-oo f(an/Z) n—-oo /an n—oo 4

2 +E(%'“n)+1_16

Therefore, W, (f) = . Lemma 2.16 implies f does not have polynomial growth.

The function f of Theorem 3.6 has a positive derivative, so

If'GOl = f'(x) <x

for all x € [1, c0) as claimed.
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4. Common Polynomial-Growth Functions

In this section, we describe how to recognize many polynomial-growth functions
described by formulas, including the (properly interpreted) correct examples in [Le] if we
take into account Lemma 2.32. We start with some important special cases:

Lemma 4.1. If D is a positive set, the following functions have polynomial growth on D:

(1) non-negative constant functions.

(2) x* for each real exponent «.

(3) logy, x for b > 1 ifand only if infD > 1 or D = {1}.
(4) floor(x) if and only if D € [1,00) or D < (0,1).

(5) ceiling(x).

Proof. Parts (1) and (2) are merely repetitions of Lemma 2.3 and Corollary 2.12
respectively. They are included here for convenience.

Let ¢ = infD. Suppose log;, x has polynomial growth on D, and D # {1}. Lemma 2.7
implies D € (1, ), and Lemma 2.19 implies 1 is not a limit point of D. Therefore,
c>1.

We now consider the converse portion of (3). The function log, x is identically zero on
{1} and therefore has polynomial growth on {1} by Lemma 2.3. Now suppose ¢ > 1.
The empty function has polynomial growth, so we may assume D # @ and ¢ < oo.
Define I = [c,),s0 D € I. Let f be the restriction of log,, x to the interval I. The
function f is increasing, so

Ar([x,2x]) = ];((Zxx))

for all x in I. Since f(2x)/f(x) is a decreasing function, we conclude that

f2c)
f(©)

qu((l()gb X)|1) = < oo,
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4. Common Polynomial-Growth Functions

Lemma 2.16 implies f has polynomial growth, i.e., log; x has polynomial growth on I.
Since D € I, Lemma 2.2(2) implies logj, x has polynomial growth on D. Part (3) is
proved.
Lemma 2.16 implies floor(x) has polynomial growth on [1, ) because
lPz(ﬂoor|[1‘oo)) =3 < oo,

The restriction of floor(x) to the interval (0,1) is identically zero and has polynomial
growth by Lemma 2.3. Lemma 2.2(2) implies floor(x) has polynomial growth on D
when D € [1,00) or D € (0,1).
Conversely, suppose floor(x) has polynomial growth on D. By Lemma 2.7, floor(x) is
either positive on D or identically zero on D. Therefore, D € [1,0) or D < (0,1). Part
(4) is proved.
Lemma 2.16 implies the ceiling function has polynomial growth on (0, o) because

v, (ceiling|(0‘oo)) =2 <o,
Lemma 2.2(2) implies the ceiling function has polynomial growth on D. O
Many polynomial-growth functions of interest, including all examples in [Le], are a
mixture of some of the ingredients listed in Lemma 2.1: constants, powers, logarithms,
floors, and ceilings. It is often possible to instantly recognize polynomial growth of such
combinations.
Lemma 4.2. If f and g are positive functions on a positive set D, then

Y, (f +9) < W (f) +¥p(9)

W (f - g) < W (f) - ¥p(9)

and
forall b > 1.
Proof. Elements of Ratios;, (f + g) and Ratios, (f - g) are of the form

(f+g)(y)= f) N gy) < f(y)+g(y)
fF+Px) fO+gx) fO+gx)  fx) gk

F-90) _ &) 9O
-9  fO) g&x)’

and

respectively, where x, y € D such that x < by and y < bx. Therefore,

76



4. Common Polynomial-Growth Functions

sup Ratios, (f + g) < sup Ratios, (f) + sup Ratios, (g)
and
sup Ratios, (f - g) < sup Ratios, (f) - sup Ratios,(g).

By Lemma 2.10(1),
Y (f +9) =¥ (f) + ¥, (9)

W (f - g) < Wp(f) - ¥p(9).

and

Corollary 4.3. If f and g are polynomial-growth functions on a positive set D, then the
sum f + g and product f - g have polynomial growth.

Proof. 1f f is identically zero, then f + g = g and f - g = f, and the result follows from
polynomial growth of f and g. Therefore, we may assume f is not identically zero. We
may similarly assume g is not identically zero.

Corollary 2.30 implies f and g can be extended to polynomial-growth functions F and G,
respectively, on R*. Neither F nor G is identically zero, so F and G are positive by
Lemma 2.7.

For b > 1, Lemmas 4.2 and 2.16 imply

Yp(F+G) <Yp(F) +9,(G) <o
and

Yp(F-G) < P, (F) -9 (G) < oo,

It follows from Lemma 2.16 that F + G and F - G have polynomial growth. Polynomial
growth of f + g and f - g follows from Lemma 2.2(2). O

Lemma 4.1 and Corollary 4.3 imply that all polynomial functions with non-negative
coefficients have polynomial growth on (0, ). As we shall see, there exist polynomial
functions with some negative coefficients that also have polynomial growth on (0, o).
A simple criterion for polynomial growth of a polynomial function is provided later in
this section.

Corollary 4.4. If f and g are polynomial-growth functions with the same domain, and g
is positive, then f /g has polynomial growth.

Proof. Since f/g = f - (1/g), Corollaries 2.15 and 4.3 imply f /g has polynomial
growth. O

Subtraction of polynomial-growth functions. Unlike addition, multiplication, and

division, subtraction does not always preserve polynomial growth. For example the
function x — x2 on (1, ) violates the non-negativity requirement of a polynomial-
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4. Common Polynomial-Growth Functions

growth function. (See Lemma 2.2(1).) Furthermore, positivity of a difference does not
guarantee polynomial growth. The function x? — x on (1, ) is positive, but Lemma
2.19 and
: 2 —
AR =0 =0

imply it does not have polynomial growth. Another example is given by the polynomial-
growth functions a(x) = x + 1and b(x) =x + 1 —e ¥ on [1, ). (The function

1 — e on [1, ) has polynomial growth by Corollary 2.13, so b(x) has polynomial
growth by Corollary 4.3.) The difference a(x) — b(x) = e™* is positive but does not
have polynomial growth (see Corollaries 2.15 and 2.35).

However, a polynomial-growth function is obtained if a small enough function (that need
not have polynomial growth) is subtracted from (or added to) a positive polynomial-
growth function:

Lemma 4.5. If f is a positive polynomial-growth function with domain D, and g is a
real-valued function on D such that

s g ()|
xelr)) f(x)

<1,

then f + g and f — g are polynomial-growth functions.

Proof. We may assume D is non-empty since the empty function has polynomial growth.
Corollary 2.30 implies f can be extended to a polynomial-growth function F on R™.
Since f is positive and D is non-empty, the function F is not identically zero. Lemma 2.7
implies F is positive.

Letb > 1 and
— sup lg (x|
xep f(x) '

s00 <c < 1. Define G:R*" > Rby G|, = gand G(t) = cF(t) forallt ¢ D. Then

c

p 161 _
u€ert F(u) ’

SO
0<(A-cFw)<Fw+a6uw) <(1+c)Fu)

for all u € R*. In particular, the function F + G is positive. Given z € Ratios,(F + G),
there exists x,y € R* such that x < by, y < bx, and

_(F+G)(}’)<<1+C)F(Y)
Z_(F+G)(x)_ 1—c/F(x)’
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4. Common Polynomial-Growth Functions

It follows from F(y)/F(x) € Ratios,(F) and Lemma 2.10(1) that

Ly)< sup Ratios, (F) =¥, (F)
F(.X) —= p b — b
and
1+c
Y, (F + G) = sup Ratios, (F + G) < (1——c) W, (F).

Lemma 2.16 implies W}, (F) is finite, so W, (f + g) is finite. By Lemma 2.16, F + G has
polynomial growth. Lemma 2.2(2) implies f + g has polynomial growth. Since

|—g(x)| = |g(x)]|, we conclude that f + (—g) also has polynomial growth. In other
words, f — g has polynomial growth. O

Relationship of Lemma 4.5 to Lemma 2.32. When D has a positive lower bound and
no finite upper bound, Lemma 4.5 is a special case of Lemma 2.32: The restriction on
lg|/f implies f + g = O(f) and f — g = ©(f). Corollary 2.22 implies f is locally
©(1), which combines with the restriction on |g|/f to imply f + g and f — g are also
locally ©(1). Therefore, f + g and f — g have polynomial growth by Lemma 2.32.

Lemma 4.5 is not entirely subsumed by Lemma 2.32. For example, define the functions
f and g on (0, ) by
sinx

2x '

F) =~ and gx) =
SO
lgx)| 1

Su = .
oy fCO 2

Lemma 4.5 implies f + g and f — g have polynomial growth. Since f + gand f — g
are not ©@(1) on (0,1), Lemma 2.32 is not applicable to the polynomial growth of f + g

orf—g.

Composition of functions also preserves polynomial growth:

Lemma 4.6. Let f and g be polynomial-growth functions with domains A and B,
respectively. If f(A) € B, then the function h: A — R defined by h(x) = g(f(x)) also
has polynomial growth.

Proof. By Lemma 2.3, we may assume h is not identically zero, so g is also not
identically zero. In particular, A and B are non-empty. Lemma 2.7 implies g is positive.
Lemma 2.2(1) implies A and B are positive sets. The function f is positive because
f(A) € B S R*.

By Corollary 2.30, f and g can be extended to polynomial growth functions F and G,
respectively, on R*. Since neither f nor g is identically zero, we conclude that neither F
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4. Common Polynomial-Growth Functions

nor G is identically zero. Lemma 2.7 implies F and G are positive. Define H: R —» R*
by H(x) = G(F(x)).

Letb > 1,s0 ¥, (F) < oo by Lemma 2.16. Let ¢ be a real number such that ¢ = ¢, (F)
and ¢ > 1. Lemma 2.16 implies ¥.(G) < .

Let x be any positive real number, and let L and U be the greatest lower and least upper
bounds respectively for F on the interval [x, bx]. Corollary 2.21 implies L and U are
positive real numbers. Thus [L, U] € R*.

By Lemmas 2.8,
U
7 = A bx]) <9, (F) < ¢,
which implies
F([x,bx]) € [L,U] < [L,cL]

and
H([x,bx]) € G([L, cL)).
Lemmas 2.9(5) implies
AH([xJ bX]) S AG([LJ CL]) S 11[)(:(0)
Therefore,

d)b(H) < d)c(G) < .

Lemma 2.16 implies H has polynomial growth. The function h is the restriction of H to
A, so Lemma 2.2(2) implies h also has polynomial growth. O

Powers of Logarithms. Let b and a be real numbers with b > 1. Define the function
f:(1,00) > Rby f(x) =logj x. Ifa # 0, Lemmas 4.1, 4.6, and 2.19 imply f has
polynomial growth on a subset D of (1, o) if and only if infD > 1. If @ = 0, then f is
the constant function x = 1 and has polynomial growth by Lemma 2.3.

Our results also enable us to recognize polynomial growth of powers of logarithms

perturbed by the floor and ceiling functions. For example, the functions g: [2, ) — R
and h: ([b] — 1, 0) — R defined by

g(x) = [logp|x|1*

h(x) = [logp[x]]*

and

have polynomial growth.

Composition of logarithms. Lemmas 4.1(3) and 4.6 combine with Lemmas 2.3, 2.7,
and 2.19 to completely determine the positive sets on which compositions of logarithms
have polynomial growth.

For example, suppose D is a positive set, and leta > 1 and b > 1. Lemmas 4.1(3) and

4.6 implies log;, log, x has polynomial growth on D if infD > a. Lemma 2.3 implies
log,, log, x has polynomial growth on D if D = {a}.
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Conversely, suppose logj, log, x has polynomial growth on D. Lemma 2.7 implies
log, log, x must be either positive (real-valued) or identically zero on D. Either
D € (a,») or D = {a}. If D € (a, ), then Lemma 2.19 implies inf D > a.

Similarly,
log. log, log, x

has polynomial growth on D for ¢ > 0 if and only if either inf D > a” or D = {a’}.

We now determine which polynomial functions in one variable have polynomial growth
on which positive sets. The result is applicable to a wider class of functions, such as

x™ —2xV5 4+ 7x71,
that resemble polynomials but may have negative or non-integer exponents.

Topological closure notation. A denotes the topological closure of A relative to R for a
set A of real numbers.

Lemma 4.7. Define p: RT - R by

k

pe) = ) e

i=1
where k is a positive integer, and cy, ..., Cg, &1, ..., &) are real numbers. The function p
has polynomial growth on a positive set D if and only if p is either positive on D N R* or
identically zero on D.

Proof. LetE = D N R*. Since D € R*, we have

D S R* =[0,0) = R* U {0},
)
D =EuU(Dn{0}).

Suppose p has polynomial growth on D. Lemma 2.7 implies p is either positive on D or
identically zero on D. Suppose p is positive on D. Lemma 2.19 combines with
continuity of p to imply that p(u) > 0 for each positive limit point u of D. Each element
of E — D is a positive limit point of D, so p is positive on E — D. Therefore, p is positive
on E as claimed.

We now prove the converse. If p is identically zero on D, then p has polynomial growth

on D by Lemma 2.3. Now suppose instead that p is positive on E. Without loss of
generality, we may assume ¢y, ..., i are non-zero, and a4, ..., @, are distinct and in
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increasing order (combine terms with the same exponent, discard terms that are zero, and
put the terms in increasing order of exponent.) Define the function g on [0, ) by

k
900 =1 + ) coxh
i=2

where
pi=a;—a; >0

for 2 <i < k. (0Pi = 0 is defined because B; > 0.) If k = 1, the expression for g(x) is
of course interpreted as g(x) = ¢;. We have

p(x) = x“1g(x)

for all x € R*. Corollary 2.12 implies x*1 has polynomial growth on D, so Lemma 4.3
implies p has polynomial growth on D if g has polynomial growth on D. By Lemma 2.3,
we may assume k > 1.

We now show that g is positive on D: Positivity of p and x*1 on E implies g is positive
on E, so we may assume D # E. Then D = E U {0}, and 0 is a limit point of D. The
function g is positive on D because D € E. Continuity of g implies g(0) = 0. Since
g(0) = ¢; # 0, we conclude that g(0) > 0, so g is positive on D.

If S is any bounded subset of D, then S is a compact subset of D, so continuity of g
implies the restriction of g to S has a minimum u and a maximum M. The function g is
positive on S because g is positive on D, which contains S. Therefore, u is positive. The
quantity M is finite because M € g(S). The set S is contained in S, so

O<usgt) <M<o
forallt € S. In particular, g is ©(1) on S. We conclude that g is locally O(1).

If D is bounded, then g is ©(1) on D, and Corollary 2.13 implies g has polynomial
growth on D. If D is unbounded, then g|p, = @(xﬁk ), which combines with Corollary
2.12 and Lemma 2.32 to imply g has polynomial growth on D. O

Examples. Define f(x) = (x — 1)(x? —3x + 3) on R, so that f(1) = 0 and f is
positive on (1,00). Lemmas 4.7 and 2.2(1) imply p has polynomial growth on the closed
interval [c, o) if and only if ¢ > 1. The function f does not have polynomial growth on
(1, ).

Define g(x) = x3 — x% + x on R. The function g is positive on R*, so Lemma 4.7
implies g has polynomial growth on R*. Observe that g(0) = 0.

Define h(x) = (x — m)? on R. Lemma 4.7 implies g has polynomial growth on Z* but
does not have polynomial growth on R*.
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Summary. We can now instantly recognize a large class of functions as having
polynomial growth. Lemmas 4.1 and 4.7 identify some important examples. Corollaries
4.3—4.4 and Lemma 4.6 provide several ways of combining polynomial-growth functions
that preserve polynomial growth. Like Lemma 2.32 and Corollary 2.33, Lemma 4.5
shows that sufficiently constrained deviations from a polynomial-growth function also
have polynomial growth.

Example. Let p(x,y,2) and q(x,y, z) # 0 be polynomials in three variables with non-
negative real coefficients. If ¢ > e, the function

3 |p(lx],log x,loglog x)
glx) =
q([x],log x,loglog x)

on the interval [c, o) has polynomial growth.
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5. Polynomial-Growth Interpolation

In this section, we consider polynomial-growth functions on certain discrete domains and
their polynomial-growth extensions to intervals. Such extensions are useful in
applications of the Akra-Bazzi formula to recurrences defined on sets of integers. The
main result is Corollary 5.3.

Lemma 2.16 says polynomial growth of a positive function g on a positive interval is
equivalent to finiteness of W}, (g) for all b > 1, which is equivalent to finiteness of

Y, (g) for some b > 1. The obvious generalization of Lemma 2.16 to positive functions
on arbitrary positive sets is false, although Corollary 2.18 says ¥, (g) < oo for each
positive polynomial-growth function g and all b > 1. Corollary 2.18 was followed by
two examples demonstrating limitations of that proposition: A positive function on a
positive set was exhibited that has finite W, but has infinite W3 and therefore does not
have polynomial growth. Another positive function on a positive set was shown to have
finite W), for all b > 1, although the function does not have polynomial growth.

The following proposition is an analogue of Lemma 2.16 for functions on suitable
discrete domains. We also provide some information about polynomial growth
extensions of such functions to the minimum intervals containing their domains.

Lemma 5.1. Suppose f:x(Z*) — R is a real-valued function where x: Z* - R* isa
positive, increasing sequence of real numbers. Define z € (0, o] by

z = lim x,,
n—->oo

and let B be the set of all real numbers b that satisfy

Xn+1
xn

b >

for all sufficiently large n (so b > 1). Let G be the set of real-valued extensions of f to
[x1, z) that are monotonic on [x,,, X,,] for all positive integers n. Then G has a
continuous element, and if B is non-empty (e.g., if z < o), either all or none of the
following statements are true:
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(1) f has polynomial growth.

(2) Either f is identically zero, or f is positive and W}, (f) < oo for some b € B.
(3) Either f is identically zero, or f is positive and W, (f) < oo forall b € B.
(4) Some element of G has polynomial growth.

(5) All elements of G have polynomial growth.

Proof. LetD = x(Z%),i.e., D = domain(f). Since x is an increasing function, we have

[x1,z) =D U U(xn:xn+1);
n=1

Dn U(xn' xn+1) = 0,
n=1

and
(xp Xi41) N (lexj+1) =0

whenever i and j are distinct positive integers. Therefore, there exists a function
f*:[xy,2) > Rwith f*|, = f and

t—x,

£ = Ft) + () (Fonsn) = fGi)

n+1 — Xn

for all positive integers n and all t € (x,,, X,4+1). The function f* is continuous.

If f(x,) = f(xn41), then f* is constant on [x,, X, +1]. If f(x,) < f(x,41), then f*is
strictly increasing on [x,,, X,,41]. If f(x;,) > f(x,41), then f* is strictly decreasing on
[x,,, Xn41]. Therefore, f* is an element of G. We have confirmed the claim that G has a
continuous element. In particular, G is non-empty, so condition (5) implies condition (4),
which implies condition (1) by Lemma 2.2(2). By Lemma 2.7 and Corollary 2.18,
condition (1) implies condition (3).

Now suppose B is non-empty, so condition (3) implies condition (2). We will show that
condition (2) implies condition (5), and the lemma will be proved.

Assume (2) is satisfied, and let g be any element of G. For all positive integers n,

monotonicity of g on [x,, X,4,] implies the restriction of g to [x,,, X, 41 ] has minimum
value

min{g (x,), g (xn+1)} = min{f (xn), f (xn+1)}

and maximum value

max{g (%), g (xn+1)} = max{f (xn), f (xn+1)}-

We conclude from
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o]

[x1,2) = U[xn’xn+1]

n=1

that g is positive if f is positive, and g is identically zero if f is identically zero. Lemma
2.3 implies g has polynomial growth if g is identically zero. Therefore, we may assume
f and g are positive, and W, (f) < oo for some b € B.

There exists a positive integer [ with

foralln > [. If z = oo, define k = [. If z < oo, there exists a positive integer m with
X, = z/b for all n = m, and we define k = max(l, m).

Ifk = 1, then [x1, x;] = {x,}. Ifk # 1, then

k-1
] = |t e
n=1

Both cases satisfy

min g([xy, x,]) = min fCe,) > 0
and o

max g([xy, %, ]) = max f(x,) <o,

so g is ©(1) on [xq, x;]. Observe that [x;, x; ] is a lower subset of [x;, z), which is the
union of [x4, x;] and [xy, z). Furthermore [x,, x; ] has positive minimum, x;, and finite
maximum, x;,. We shall prove that g has polynomial growth on [x, z), so g is a
polynomial growth function by Corollary 2.25.

Suppose z < o0, so bx;, = z and

D N [xy, bx,] = {x,, : n = k}.
Observe that

o

[xkl Z) = U [xnf xn+1]-

n=k

Lemma 2.10(4) implies

f )
¥, (f)

inf (g([xt 2))) = inf (min(g(Lxn, %1 1)) = Inf f(a) = G g > 0

and

sup ([, 2))) = sup(max(g ([, xns11))) = sUp £ (en) < Wy (1)f () < oo
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Corollary 2.13 implies g has polynomial growth on [x;, z). Therefore, we may assume
Z = oo,

Let y be any element of [x;, @), so by is also an element of [x),20). There exist positive
integers v,w = k such that

Xy SV < Xpyp and x, < by < X 41
The inequalities
Xv+1 < bxv < by < Xw+1
imply v < w. Define
H =D n [x,, bx,],

I'=D N [xy41,bxp14],
and
] = D n [le bxW]

The sets H and I contain x4, so H N I is non-empty. The inequalities,

Xy < Xpypq < bx, < bxyyq
imply

HUI=Dn[x,bx,.]
The inequalities

Xp+1 = Xw = by < bxv+1
imply I contains x,,. The setJ also contains x,,,, so

Xy EINJS(HUI)N].
In particular, (H U I) N ] is non-empty. The inequalities

Xy < Xy < bxyiq < bxy,
imply

Hulu]J=Dn[x,bx,].
Let

S=DN[xy,xps1] ={x,: v<n<w+1}

Since x,, 41 < bx,,, wehave SC HUI U] and f(S) € f(HUIU]). It follows from

Hnl#¢and(HUI)N]J#¢thatf(HNI)#=¢dand fF(HUI) N f(J) # ¢. Since f is
positive, the dynamic range A (S) is defined. Parts (5) and (6) of Lemma 2.9 imply

Ar(S) S As(HUTUJ) < As(H U DA < A (A (DAL() < Wy ()2
Define L = inf g([x,, x,,+1]) and U = sup g([x,, X,y+1]), S0

L= min (min(g([xy, xns1]))) = min £(S)
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and
U = max (max(g([xn,xn+1]))) = max [ (S).

vsnsw
Lemmas 2.8 and 2.9(5) combine with [y, by] € [x,, x,,4+1] to imply

max f(S)

U
Ag([y' by]) < Ag([xv’xw+1]) = z = m

Therefore,

= Ar(S) <9, (N)3.
Yy (gl o)) = JSup Ay([y,by]) < Wp(f)® < 0.

Lemma 2.16 implies g has polynomial growth on [x;, ) as required. O

Limit superior of ratios. Let B and x4, x5, X3, ... be as in Lemma 5.1, and define

X
L =lim sup ntl

nowo  Xp

Either B = (L, ©) or B = [L, ). In particular, B is non-empty if and only if L < oo,

Corollary 5.2. Let f: D — R be a real-valued function on a non-empty upper subset D of
the positive integers. Let G be the set of real-valued extensions of f to [min D, ) that
are monotonic on [n,n + 1] for all n € D. Then G has a continuous element, and either
all or none of the following statements are true:

(1) f has polynomial growth.

(2) Either f is identically zero, or f is positive and W}, (f) < oo for some b > 1.
(3) Either f is identically zero, or f is positive and W, (f) < oo forall b > 1.
(4) Some element of G has polynomial growth.

(5) All elements of G have polynomial growth.

Proof. Define the surjection x: Z* - D by x, =n — 1+ minD. Since x is an
increasing function and

. Xpa1 _ n + min D
lim = lim — =
n-co X, n-con — 1+ minD

)

the interval (1, o) is the set of all real numbers b that satisfy

Xn+1
le

<b

for all sufficiently large n. The proposition follows from Lemma 5.1. O

Corollary 5.3. If f is a polynomial-growth function on a set of integers, then f has a
continuous, polynomial-growth extension to R*.
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Proof. Let D = domain(f). Lemma 2.2(1) implies is f is real-valued and D is a
positive set. If f is identically zero, then the identically zero function on R* is a
continuous extension of f and has polynomial growth by Lemma 2.3. Now suppose f is
not identically zero, so D is non-empty. Lemma 2.7 implies f is positive.

Lemmas 2.30 and 2.2(1) implies f can be extended to a polynomial-growth function
f*:Z* - R. Corollary 5.2 implies f* can be extended to a continuous, polynomial-
growth function g: [1, ) — R, which is also an extension of f. Positivity of f and non-
emptiness of D imply g is not identically zero. Lemma 2.7 implies g is positive.

Define g*: R* — R* by g*|[1..) = g and g*(x) = g(1) for all x € (0,1). The function
g” is continuous. Lemma 2.3 implies g* has polynomial growth on (0,1). Lemma 2.24
implies g* is a polynomial-growth function. Furthermore, g* is an extension of f
because g* is an extension of g, which is an extension of f. O

Infinitely Differentiable Extensions. Partly because of Leighton’s remark in [Le] about
derivatives and polynomial growth, and partly just for fun, we will show in Corollary 5.6
that the set G of Lemma 5.1 has an infinitely differentiable element g. Corollaries 5.7
and 5.8 replace continuity with infinite differentiability for Corollaries 5.2 and 5.3,
respectively.

The bridging function J of Lemma 5.4 below is the key building block for g. We use the
same well-known construction for J as in [Wik]. An alternative choice for J is provided
by problem 12 on page 40 of [GO].
Lemma 5.4. There exists an infinitely differentiable function J: R — [0,1] such that

(1) J(x) =0forall x < 0.

(2) J(x) =1forallx > 1.

(3) Jljo,17 s strictly increasing.

Proof. Define a function f: R = R by

(e Vx, forx >0
fe) = { 0, forx < 0.

The function f is infinitely differentiable on (—oo, 0) with f ™ (x) = 0 for all x < 0 and
alln € Z*. Therefore the left nth derivative of f is defined at zero with value zero.

The function f is also infinitely differentiable on (0, o): It can be easily shown by
induction that for each nonnegative integer n, the function f is n times differentiable on
(0, 00) and there exists a polynomial p,, with real coefficients such that the nth derivative
™ satisfies
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5. Polynomial-Growth Interpolation

£ () = pn() o1/

for all x > 0. Here f® = f and py(x) = 1.

We claim that f is infinitely differentiable at zero, and f M) (0) = 0 for each non-negative
integer n. The case n = 0 is a restatement of the definition of f at zero, i.e., f(0) = 0.

If n > 0 is an integer for which f is n time differentiable at zero and f ™ (0) = 0, then
the (n + 1)th right derivative is defined at 0 by

(n)
€ R €O BN

x>0t X X0+ x2n+l

=0,

which agrees with the (n + 1)th left derivative at zero. Thus f isn + 1 times
differentiable at zero and f™*1(0) = 0. The claim follows by induction. Therefore, f
is infinitely differentiable on R.

Since

fGO+fA-x)>0

for all x € R, we may define a function /: R = R by

f&)

&) = v Fa=n

The function J is infinitely differentiable because f is infinitely differentiable. If x < 0,
then J(x) = 0 because f(x) = 0. If x = 1, then J(x) = 1 because f(1 — x) = 0. The
derivative of ] satisfies

O +FfA-x))—FE(f'()—f(1-x)
(f) +fA - 0)°

Q-0+ f@f A-x)
(F@) + 1 -x)°

J' () =

If x € (0,1), then 1 — x € (0,1). Since f and f' are positive on (0,1), we conclude from
the expression above for J' that ] is positive on (0,1). Therefore /| 1 is strictly
increasing. Continuity of J implies J([0,1]) = [0,1]. Therefore, J(R) = [0,1]. O

Definition. A real-valued function on a set of real numbers is strictly monotonic if it is
either strictly increasing or strictly decreasing.

Corollary 5.5. Let a, b, c, and d be real numbers such that a < b. There exists an
infinitely differentiable function h: [a, b] — R such that
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5. Polynomial-Growth Interpolation

(1) h(a) =c.

(2) h(b) =d.

(3) h is either constant or strictly monotonic.

(4) For each positive integer n, the nth derivative satisfies
h™(a) = h™(b) = 0.

Proof. Let ] be as in Lemma 5.4, and define the functions A: [a, b] = [0,1] and
h:[a,b] = R by
xX—a

b—a

Alx) =

and

h(x) =c +](/1(x))(d - ).

Observe that h(a) = ¢ and h(b) = d, as required. If ¢ = d, then h(x) = c for all
x € [a, b]. Since A and [ q) are strictly increasing, h is strictly increasing if ¢ < d,
and h is strictly decreasing if ¢ > d.

The function h is infinitely differentiable. For all x € [a, b] and n € Z*, the nth
derivative is given by

J™(A0))(d - ¢)

h(n)(x) = (b—a)"
Therefore,
N IO
h( )(a) = b= =
and
(n) —
w0 DE=0

(b —a)"

Corollary 5.6. Let x: Z* - R* be a positive, increasing sequence of real numbers, and
define z € (0, 0] by

z = lim x,,.
n—->oo

Given a function f: x(Z*) — R, there exists an infinitely differentiable function
g:[x1,z) » R such that foralln € Z*,

(1) g(xn) = f(xp).

(2) The restriction of g to [x,, x,,4+1] is either constant or strictly monotonic.

(3) g®(x,) =0forallk € Z*.
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5. Polynomial-Growth Interpolation

Proof. Corollary 5.5 implies that for all n € Z* there exists an infinitely differentiable
function h,,: [x,, X,+1] = R™ such that

(a) hn(xn) = f(xn) and hn(xn+1) = f(xn+1)-

(b) h,, is either constant or strictly monotonic.
(c) h,(lk) (xp) = hg‘)(xnﬂ) =0forallk € Z*.

Since

[x1,2) = U (X0, Xn41)
nezt

is a union of disjoint sets, there exists a function g: [x;,z) — R such that

gl[xn:xn+1) = hnl[xn:xn+1)

forall n € Z*. (We are using the axiom of choice here, although its use can be avoided.)
In particular,

g(xn) = hy(xn) = f ().

Since each h,, is infinitely differentiable, g is infinitely differentiable on each interval of
the form (x,, x,4+1). Let k € Z*. The kth right derivative of g at x,, is inherited from
h,, with the value zero. For n > 1, the kth left derivative of g at x,, is inherited from
h,,_; and is also zero. Therefore the kth left and right derivatives of g at x,, are defined
and in agreement when n > 1. Of course, the kth derivative at x; is one sided. We
conclude that g™ (x,)) = 0 foralln € Z*. The function g is infinitely differentiable.

By construction, g agrees with h,, on each [x,, x,,,). It follows from

g(xn+1) = f(xn+1) = hn(xn+1)

that g agrees with h,, on [x,, x,4+1]. Therefore, the restriction of g to [x,, x,,] is either
constant or strictly monotonic. O

Corollary 5.7. Let f: D — R be a real-valued function on a non-empty upper subset D of
the positive integers. There exists an infinitely differentiable extension g of f to

[min D, o) such that for all n € D, g is monotonic on [n,n + 1] and g% (n) = 0 for
each positive integer k where g(® is the kth derivative of g.

Proof. The proposition follows from Corollary 5.6 with x: Z* — D defined by
X, =n—1+minD,

so that x,, approaches infinity as n approaches infinity. O
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5. Polynomial-Growth Interpolation

Example. Define the function p: [1,0) — R by
p(x) = 2x —3)(4x — 7).

The roots of p are 3/2 and 7/4. The function p is positive on (7/4,0). Let f be the
restriction of p to Z*. The inequality (1) > 0 implies f is a positive function. Lemma
4.7 implies f has polynomial growth but p does not. Corollary 5.7 implies there exists an
infinitely differentiable extension g of f to [1, o) that is monotonic on [n,n + 1] for all
n € Z* and has vanishing derivatives of all positive orders at each such n. Corollary 5.2
implies g has polynomial growth.

The function p is not monotonic on the interval [1,2], which contains both roots.
Furthermore, neither its derivative x = 16x — 26 nor its second derivative x - 16
vanish at any positive integers. The function g is not the obvious infinitely differentiable
extension p of f.

Corollary 5.8. If f is a polynomial-growth function on a set of integers, then f has an
infinitely differentiable, polynomial-growth extension to R*.

Proof. Our argument is an obvious adaptation of the proof of Corollary 5.3. Let D be the
domain of f. Lemma 2.2(1) implies is f is real-valued and D is a positive set. If f is
identically zero, then the identically zero function on R* is an infinitely differentiable
extension of f and has polynomial growth by Lemma 2.3. Now suppose f is not
identically zero, so D is non-empty. Lemma 2.7 implies f is positive.

Lemma 2.30 implies there exists a polynomial-growth function f* on Z* that is an
extension of f. Lemma 2.2(1) implies f* is real-valued.

Corollary 5.7 implies there exists an infinitely differentiable extension g of f* (and f) to
[1, ) such that for all n € Z*, g is monotonic on [n,n + 1] and g (n) = 0 for each
positive integer k where g® is the kth derivative of g. Lemma 5.2 implies g has
polynomial growth. Positivity of f and non-emptiness of D imply g is not identically
zero. Lemma 2.7 implies g is positive.

Define h: R* — R* by h|[;,) = g and h(x) = g(1) for all x € (0,1). Lemma 2.3
implies h has polynomial growth on (0,1). Lemma 2.24 implies h is a polynomial-
growth function. The function h is an extension of f because h is an extension of g,
which is an extension of f. The restriction of h to (0, 1] is constant and is therefore
infinitely differentiable. For each positive integer k, the kth left derivative of h at 1 is 0,
which agrees the kth derivative of g at 1, i.e., the kth right derivative of h at 1.
Therefore, h is infinitely differentiable at 1. We conclude that h is an infinitely
differentiable function. O
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6. Leighton’s Second Example

The second example in [Le] of Theorem 1 says

“IfT(x) = 2T (x/2) + gT(Sx/AL) + @(x2/log x), then p = 2 and
T(x) = 0(x2/loglogx).”

The conclusion is incorrect, as we shall see. The recurrence in Leighton’s example is
presumably shorthand for the family of recurrences of the form

0(1), forl <x<x,

Tl = { 2T (x/2) + gT(3x/4) +g9(0),  forx > x.

that satisfy
g(x) = 0(x*/logx)

and the hypothesis of Theorem 1, i.e.,

- { 1 1 1 } _
Yo =MaN123/4°1/4) ~
and g is a non-negative (and locally Riemann integrable) real-valued function satisfying
Leighton’s polynomial-growth condition relative to {1/2,3/4}.

His polynomial-growth condition requires the domain of g to contain the interval
[1/2,00). The extraneous inclusion of [1/2, x,] in the domain of g means that we cannot
replace ©(x?/log x) with x2/log x for any member of the family. Non-negativity of g
implies g(x) # x2/log x for all x € [1/2,1). Furthermore, x2/log x does not represent
a real number when x = 1.

Let x, = 4. For each real-valued function f on [1/2,00), define the real-valued function
Tf on [1, 00) by
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6. Leighton’s Second Example

1, forl <x <x,

e = { 2T (x/2) + ng(3x/4) +f(),  forx>x,.

Let h be the continuous real-valued function on [1/2,00) defined by

x?/logx, for x > x,
xo%/log x,, for1/2 < x < x,.

h(x) = {

The defining recurrence for T}, is a member of the family of recurrences referenced by
Leighton’s example. Theorem 1 of [Le] implies

T,(x) =0 (xz (1 + jx hl(:;) du)) =0 (xz _[xul;gudu)

T, (x) = 0(x?loglogx) # O(x?/loglogx),

ie.,

which contradicts [Le].

Theorem 1 of [Le] has excess baggage that unnecessarily complicates its application to
this family of recurrences. For example, let @ be any non-negative real-valued function
on [1/2, o) such that a(x) = x2/log x for each x > 1, so that a approaches o as x
decreases to 1. Lemma 2.19 implies @ does not have polynomial growth regardless of
how we define the restriction of @ to [1/2,1]. By Corollary 2.17, a does not satisfy
Leighton’s polynomial-growth condition relative to {1/2,3/4}. Therefore, Theorem 1 is
not directly applicable to our description of the recurrence for T,. Furthermore,
unboundedness of the Akra-Bazzi integrand

a(u)

u3

on [1,x] for all x > 1 implies the integrand is not Riemann integrable on any such
interval. To make matters worse, the inapplicable Akra-Bazzi integral

jx aw) du

u3

is divergent as an improper integral:

Ya(u) ("
3 du = 11rr;r 1
;U t-1* J, ulogu

lim
t-1t

du = loglogx — tlir1n+(log logt) = oo.

However, &|(x,0) = hl(x, ). Therefore, the functions T, and T}, are identical, and

T,(x) = T,(x) = 0(x?loglog x).

95



7. Recurrences

We start with a discussion of difference equations as examples of recurrence relations,
followed by definitions of multi-recurrences, divide-and-conquer recurrences, and their
solutions. We shall also describe the relationship of our definitions to [Le].

Some awareness of linear algebra is assumed. Herstein’s classic text [He] is an excellent
resource.

Shift operators. Let F be a field, and let V be the vector space over F of all infinite
sequences x: Z* — F with members in F. The left shift operator on V is the function
L:V — V defined by
(L(X))n = Xn+1

foralln € Z*, i.e., the sequence

X1, X2, X3, o
is mapped to the sequence

X2, X3, Xg, o

The right shift operator on V is the function R: V — V defined by

0, forn=1
(R(x))n - {xn_l, forn>1

foralln € Z*, i.e., the sequence
X1, X9, X3,
is mapped to the sequence
0, X1, X2, X3,

Both shift operators are linear transformations. Each non-zero A € F is an eigenvalue of
L with an associated eigenvector
1,1,4%,23, ...

The null space of L — Al is one dimensional, i.e., every A-eigenvector of L is a scalar
multiple of the eigenvector shown above. Here [ is the identity transformation on V.
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Fibonacci Numbers. The most famous recurrence relation is undoubtedly the definition
of the nth Fibonacci number as

F—{ 1, forn=1andn =2
m o\ Fpoy + Frey, forn > 2,

which yields the sequence
1,1,2,3,5,8,13,21,34,55 ...

(Many authors also include F, = 0 as a Fibonacci number.) We shall review a very
natural derivation via linear algebra of the well-known formula for the nth Fibonacci
number. A popular alternative method uses generating functions (see [Wilf] and [GKP]).
The formula can also be easily proved by induction. However, induction does not
explain how to discover the formula.

Let F: Z* — R be the function n — F,, and let V be the vector space over R of all real-
valued functions defined on the positive integers. Let L be the left shift operator on V.
Let W be the null space of L? — L — I, where [ is the identity map on V, i.e., W is the set
of all sequences w: Z* — R that satisfy

Wniz2 = Wpit Wy
for each positive integer n. In particular, F € W and W is L-invariant. The polynomial

t? — t — 1 has roots
14++/5 1-+/5
=— and Y = >

®
The number ¢ is called the golden ratio. Let E,, and E;, be the eigenvectors

1,¢,02% @3, ..

1,9, 92,93, ..

and

of L associated with the eigenvalues ¢ and v, respectively. In particular, E, and Ey, are
linearly independent elements of W

Let R? be the real vector space of ordered pairs of real numbers, and define m: W — R?
by t(w) = (wy,w,) for allw € W. The function 7 is a linear transformation. For each
(cq, ¢;) € R? there is exactly one element w of W that satisfies w; = ¢; and w, = ¢,
ie.,

1, forn=1
wy, = Ca, forn =2
Wy_q +Wy_g, forn > 2.
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Therefore, 7 is a vector space isomorphism of W onto R?, so W has dimension 2, which
implies {E(p, Ew} is a basis of W. We conclude that F is a linear combination of E,, and
Ey,ie.,
F =aE, + bEy
for some a,b € R, so
E, = ap™ 1+ pyn?

for all positive integers n. In particular,

and
1=F,=ap+bYp=ap+(1-a).
Then
g1V _@
-9y 5
and
- _
b=1—a=\/_ q)z—i.
V5 V5
Therefore,
n __ n
F, "=y
V5

for all positive integers n.

Much of the discussion of Fibonacci numbers has an obvious generalization (with
appropriate modifications) to any homogeneous linear difference equation with constant
coefficients over any field. Many such equations involve repeated eigenvalues. Further
details are provided in the next few pages.

Generalized eigenvectors of left shift operators. Let F be a field, and let VV be the
vector space over F of all infinite sequences x: Z* — F with members in F. Let L and R
be the left and right shift operators, respectively, on V. Let A be any element of F, so the
null space of L — Al is the one-dimensional subspace of V spanned by

1,4,4%,23, ...
Here I is the identity map on V. We shall use R and binomial coefficients to specify

generalized eigenvectors of L corresponding to the eigenvalue A. For each non-negative
integer m, define s,,,: Z* - F by

5 (1) = (m +T:_ 1)/111_1

for all positive integers n, 1.e., S, is the sequence
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O e

Also define b,,: Z* > F by b,, = R™(s,,). Here R™ refers to composition of functions
instead of exponentiation of function values, and R® = I. The first few b,, are shown

OO ()
=0 () (3)a )t ()= 0,120,228,

N N
b, =0, o,( )( )/L (2) /12,(2) A3, ..=0,0,1,31,61%,101°, ..

3\ /4 6
bs = 0,0,0, ( )( )A( ) 2,( ),13, = 0,0,0,1,44, 1012, 202°, ..
3)\3 3
4\ /5 7
b, = 0,0,0,0, (4),(4),1,< );12,<4),13, —0,0,0,0,1,54, 1542, 3513, ..

Let a = (L — AI)(b,,) for some positive integer m, so
a, = b,(n+ 1) — Ab,,(n).
for each positive integer n. If n < m, then
n=0=b,_;(n).

If n = m, then
ap =1=bp_1(n).

If n > m, then
a, =Ssy,(n—m+1) —As,,(n —m),
ie.,
— n n-m n-— 1 n-m _—_ n-— 1 n—-m
an_(m)/1 _< m )}L _<m—1)/1 ’
SO

Ay = Sp_1(n—m+1) = by,_1(n).

Therefore, a = b,,_4, i.€.,
(L - AI)(bm) = bm—l
for all positive integers m. Recall that (L — AI)(by) = 0. For all positive integers k, we

have
(L—2ADk(by) = by #0
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and
(L= A< (B) = (L = AD(L = AD* (b)) = (L = A1)(bo) = 0.

For each such k, let W,, be the null space of (L — A1), so
bk E Wk+1 - Wk'

Since by, € W;, we conclude that
by, ..., br_1

are linearly independent elements of W,,. Let a be any positive integer, W = W, and
N =L — Al, so W is the null space of N¥ and is therefore N-invariant. (N is a mnemonic
for nilpotent). Define

B ={bgy, ..., bg-1}-

We shall show that B is a basis for W, and W has dimension a. Let Y be the space
spanned by B, so Y € W. The set B is a basis for Y, which has dimension a. Since
N(by) =0 €Y and N(b;) = b;_, € Y forall b; € B — {b,}, we conclude that N(B) € Y,
which implies N(Y) € Y.

Suppose Y # W, so there exists z € W — Y. The set
C={N¥(2):0<k<a}

contains z because N° = I, and C is contained in W because W is N-invariant.
Furthermore, C is N-invariant because N**1(z) = 0 = N%(z) € C. Let U be the space
spanned by Y and C. The space Y is finite dimensional, and C is finite, so U is finite
dimensional. Let d be the dimension of U. The space U is N-invariant because Y and C
are N-invariant. We know U € W because Y € W and C € W. The space Y is properly
contained in U becausez € C — Y € U — Y. Therefore, d > «a.

The space U is the direct sum of N-invariant subspaces Hj, ..., H, for some positive
integer q such that the characteristic polynomial p;(t) € F[t] of N| H; 18 also the
minimum polynomial of N|y,. Each H; is annihilated by N because H; S U € W.
Therefore, the monic polynomial p;(t) divides the polynomial t* € F[t]. We conclude
that p;(t) = tPi for some positive integer §; < a. Furthermore, B; is the dimension of

H;, so
q
d = Z :Bi'
i=1

We conclude from 5; < a < d that ¢ > 1. The restriction of N to U has characteristic
polynomial t because
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q

td = Htﬁi.

i=1

The N-invariant subspaces H; and H, contain eigenspaces E; and E,, respectively, with
associated eigenvalue 0, 1.e., E; and E, are non-zero subspaces of the null space of N.
However, the null space of N is the one-dimensional space spanned by b, so

0+#b,€E,NE, € H NH,

which is a contradiction. Therefore, Y = W. We conclude that B is a basis for W,
which has dimension a.

Homogeneous linear difference equations with constant coefficients. We can now
generalize our discussion of Fibonacci numbers. A homogeneous linear difference
equation with constant coefficients in a field F is synonymous over F with an equation of
the form

(p(Lp))W) =0

where Ly is the left shift operator on the vector space Vi of sequences v: Z* — F with
members in F, and p(x) € F[x], i.e., p(x) is a polynomial in one indeterminate with
coefficients in F. Here u is a solution in Vj of the difference equation. In other words,
the null space, Wy, of the linear transformation p(Lg) is the solution set in Vi of the
difference equation.

Let K be a field extension of F such that p(x) is a product of linear factors in K[x], i.e.,
K contains a splitting field of the polynomial p(x). (Existence of such extensions is
guaranteed.) Let Ly be the left shift operator on the space Vi of sequences v: Zt - K
with members in K. Let Wy be the null space of p(Lg), i.e., Wy is the set of solutions in
Vi of the difference equation. Then Wy = Wy N V.

Let d be the degree of p(x). Each initial sequence vy, ..., v4 of elements of K has exactly
one extension to a solution of the difference equation in Vg, i.e., a unique extension to an

element of Wy. Thus the linear transformation my: Wy = K¢ defined by v & (vy, ..., v4)
is an isomorphism, which implies the dimension of Wy is d. (The analogous map for Wy

is also an isomorphism, so Wy also has dimension d.)

The space Wy is Lg-invariant. Let T be the restriction of Ly to Wy, so T: Wy = Wy isa
linear transformation, and p(T) = 0. Let

p(x) = ﬁ(x — A)
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be the representation of p(x) as a product of powers of distinct linear factors. The space
Wy is the direct sum of the subspaces J4, ..., Js where J; is the null space of (T — A;1)%:.
For1<i<sand0 <m < q; define s;,,,;Z* - K and b; ,,,: Z* - K by

m+n—1 _
Si,m(n) = ( m )/1in !

bi,m = Ir(n(si,m)

and

where Ry is the right shift operator on V. Let

Bi = {bi,Of ey bi,ai—l}-

As explained earlier, B; is a basis of J;. Define

N
B = U Bil
i=1

so B is a basis of Wy. The set mx(B) is a basis of mx (W) = K¢ because m is an
isomorphism. Each (vy,...,v;) € K 4 has a unique representation as a K-linear
combination of the elements of 7, (B):

s ai—1

(v, -, vq) = Z Z cijmk (bi ;)

i=1 j=0

where each ¢; ; is an element of K. The coefficients c; ; can be found by solving the
system of linear equations above, provided each b; ; is known, i.e., the roots of p(x) are

known. Let
s a;i—1

v - Z Z Ci’jbi’j’

i=1 j=0
so v € Wy and
T[K(v) = (vll ey vd)'

In other words, v is the unique solution in Wy of the difference equation with initial
subsequence vy, ..., Vg4.

Difference equations on arbitrary non-empty upper subsets of the integers. Our
discussion of sequences, shift operators, and difference equations on the positive integers
is applicable, mutatis mutandis, to domains that are non-empty upper subsets of the
integers. Only a simple change of variables is required.
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The difference operator. We now justify our description of solutions of homogeneous
linear difference equations with constant coefficients as null spaces of linear
transformations defined as polynomials applied to left shift operators. Let V be the
vector space over a field F of all infinite sequences x: Zt — F. Let L be the left shift
operator on V, and define the difference operator A:V — V by

A(X)(n) = xpy1 — Xp

for all positive integers n. Let F[A] and F[L] be the rings of polynomials in A and L,
respectively. We have

A=L—1€F[L],
so F[A] € F[L]. Similarly,

L=A+1€F[A]

so F[L] € F[A]. Therefore, F[A] = F[L]. (Here I:V — V is the identity map.)

Difference equations are very different from divide-and-conquer recurrences. However,
we shall discover in Section 35 that solutions of many difference equations of the form

()W) =Gc()

have their asymptotic behavior determined by an application of the Akra-Bazzi formula
to an associated divide-and-conquer recurrence. Here v: Z* — R is an element of the
vector space V of real infinite sequences, p € R[x] is a polynomial with real coefficients,
L is the left shift operator on V, and the function G:V — V maps sequences to sequences.
Unlike our previous examples, the difference equation may be nonhomogeneous, i.e., G
is not assumed to be identically zero. Furthermore, G need not be constant.

We define multi-recurrences with enough generality to include (with some adaptation)
nearly all our examples that satisfy the conditions of [Le]. (Section 19 contains an
example that violates part (6) of the definition because its sole dependency’s range is not
contained in the recurrence’s domain.) We later define semi-divide-and-conquer
recurrences and show they are representable as multi-recurrences. The previously
discussed difference equations are also representable as such.

Definition. A multi-recurrence is a (k + 5)-tuple

(D,C, I, f, A1y, o, Tk)
where

(1) D and C are sets.
(2) I is a subset of D.

B)f:D-I-C.
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(4) k is a positive integer.
G)A:IxCk-C.
(6) 11, .., T: I = D.
D is the domain of the recurrence, f is the base case, I is the recursion set, and the

functions 7y, ..., 1, are the dependencies. (C is a mnemonic for codomain.)

As with the definition above, we usually say “recurrence” where many authors say
“recurrence relation”. Other terminology in the definition is also non-standard. Our
usage of “multi-” indicates that multiple dependencies are allowed (although the number
of dependencies must be finite and constant.) Multi-recurrences are usually described by
equations defining their solutions instead of their representation as tuples.

Definition. A solution of a multi-recurrence

(D,C, I, f, A1y, o, Tr)

is a function T: D — C that satisfies T|p_; = f and

T(x) =41 (x, T(rl(x)), s T(rk(x)))

forall x € 1.
If a multi-recurrence

(D,C, I, f, A1y, o, k)
has I = ¢, then the domain of the recurrence is the domain of the base case; there is no
recursion, the base case is the unique solution, and A, 1y, ..., 1}, are the empty function. If
I = D, then the base case is the empty function. If I = D # ¢, then recursion is infinite.
(Finite and infinite recursion are defined in Section 8.) If D = ¢, then the empty function
is the only solution of the recurrence.
Multi-recurrence for Fibonacci numbers. Let

I={neZ:n>2}
Define f:{1,2} > Z* by f(1) = f(2) = 1, and let

MIXZYXZt > Z*

be the function defined by A(x,y,z) =y + z. Definery,r,:1 > Ztbyry(n) =n—-1
and r,(n) = n — 2. A solution of the multi-recurrence
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(Z+Iz+lllflllrllr2)l
is a function T: Z* — Z* that satisfies

TH=T2)=1
and

T(n) = 2(n, T(r (W), T(r; (M) ) = T(n = 1) + T(n — 2),

for all n > 2. The function that maps each positive integer n to the nth Fibonacci
number is the unique solution of the recurrence.

Multi-recurrence for binomial coefficients. The well-known recurrence relation for
binomial coefficients is
(5)=()=1
o/ \n/

(n) _ (n—1)+<n—1)

k) \k—-1 k

for all integers satisfying 0 < k < n. The recurrence relation may be regarded as a
multi-recurrence. Let

for all integers n > 0, and

D={(nk)€EZXZ:0<k<n}
and
I={(n,k)€ED:0<k<n}
Define f:D — I - Z* by f(n, k) = 1 and define ry,1,: 1 - Z* by

rnmk)=mn-1,k-1)

and

r,(n, k) = (n—1,k).
Define

AMIXZtXZt > Zt
by

Ax,y,z) =y + 2z
The unique solution of the multi-recurrence

(D)Z+)Iifl/1ir11‘r2)
is given by

T(n k) = (Z)

Example of a multi-recurrence with no solution. Let [ = {n € Z : n > 1}, and define
f:{1} > Z* by f(1) = 1. Define 2: 1 X Z* - Z* by A(m,n) = q(n), where
q:Z* - Z* is defined by
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q(n) = {n +1, for n odd
n—1, for n even,
1.€.
121,
3m 43

56m5,

Define r:1 - I by
n+1, forn = —1 or 0 (mod 3)

r(n) = {n —2 forn =1 (mod 3),

i.e.,
23452
5675,
8910+~ 8,

Observe that g2 and 73 are the identify maps on Z* and I, respectively. (Powers of q and
r represent composition of functions.) Suppose T is a solution of the multi-recurrence
(Z*,Z%,1,f, A, 7).

Ifn €1, thenr(n),r*(n) € I and

T(n) =q (T(r(n))) = q* (T(rz(n))) =T(r?(n)) = q (T(r3(n))) =q(T(m)).
Since g has no fixed points, there is no such solution T.
Examples of multi-recurrences with infinitely many solutions. Define r: Z — Z by
r(n) =n— 1. Let 1: Z X Z — Z be the projection onto the second component, i.e.,
A(n,t) =t for all integers n and t. A solution of the multi-recurrence

R=(Z,Z2Z0,A1)

is any function T: Z — Z that satisfies

T(m) =2 (n,T(r(m)) =T(r(n)) = T(n - 1)

forall n € Z. For each integer k, there is a solution T}, of the recurrence defined by
Tx(n) = k for all n. Indeed, {T} : k € Z} is the set of all solutions of R. Furthermore,
T; # T; whenever i # j. Therefore, the recurrence has an infinite number of solutions.

The recurrence has an empty base case. However, a slightly modified version has a non-

empty base case: Let D = Z U B, where B is any non-empty set that does not contain
any integers. Let f be any function from B to Z. (Such functions exist. For example, let
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b — 0 for all b € B.) Each solution T}, of R can be extended to a solution Ty, of the
multi-recurrence
S=(D,ZZf, A1)

defined by Ty |; = Ty and Ty |p = f. The solutions T;" and T} disagree on Z whenever
i # j, so S has an infinite number of solutions.

Existence and uniqueness of solution. In Section 8, we shall show (Lemma 8.2) that
every finitely recursive multi-recurrence has a unique solution.

Definition. A semi-divide-and-conquer recurrence is a (3k + 4)-tuple

R = (D, I, aq, ...,ak, bl' ...,bk,f,g, h’l’ ""h’k)
where

(1) D is a set of real numbers.

(2) I is a non-empty upper subset of D with a positive lower bound.

(3) k is any positive integer.

(4) a4, ..., ay are positive real numbers.

(5) by, ..., by, are real numbers satisfying 0 < b; < 1 forall i € {1, ..., k}.

(6) f is areal-valued function on D — [ with a positive lower bound and finite upper
bound.

(7) g i1s a non-negative real-valued function on .
(8) hy, ..., hy are real-valued functions on .
(9) b;x + hiy(x) € D forallx € I and all i € {1, ..., k}.

R is proper if bjx + h;(x) < x forall x € [ and all i € {1, ..., k}; otherwise R is

improper. The set D is the domain of the recurrence, f is the base case, I is the recursion

set, and g is the incremental cost. The functions hy, ..., hy are the noise terms of the
recurrence, and the functions b;x + hy(x), ..., bx + hy(x) on I are the dependencies.
The recursion set is also called the recursion interval when it is an interval.

Definition. A divide-and-conquer recurrence is a proper semi-divide-and-conquer

recurrence. A mock divide-and-conquer recurrence is an improper semi-divide-and-
conquer recurrence.
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We are primarily interested in divide-and-conquer recurrences. However, mock divide-
and-conquer recurrences also arise in our analysis of Leighton’s Theorem 2.
Furthermore, two of our main results (see Section 20) are applicable to both divide-and-
conquer recurrences and mock divide-and-conquer recurrences.

Semi-divide-and-conquer recurrences are usually described by equations defining their
solutions instead of their representation as tuples.

Definition. A solution of a semi-divide-and-conquer recurrence

(D,], a, ..., Ag, bl’ ...,bk,f,g, h’ll ""h’k)

is a real-valued function T on D such that T|,_; = f and

K
T(x) = Z aiT(bix + hl-(x)) + g(x)

i=1
forall x € I.

Representation as multi-recurrences. A semi-divide-and-conquer recurrence
(D,1,a4,...,a3,bq, ... by, f, g, Ay, o, hy)
can be regarded as the multi-recurrence
(D,R,I,f, A1y, ..., 1)

where each function 7;: I — D is defined by 7;(x) = b;x + h;(x), and 1: I X R* - R is

defined by
K

AMx, 24, o, Z) = Z a;z; + g(x).

i=1

A semi-divide-and-conquer recurrence and its corresponding multi-recurrence have the
same domain, base case, recursion set, dependencies, and solutions.

Unlike our definition of a multi-recurrence, we require a semi-divide-and-conquer
recurrence to have a non-empty recursion set. Multi-recurrences are allowed to have
empty recursion sets as a minor convenience for our discussion of depth of recursion in
Section 8.

Like multi-recurrences, semi-divide-and-conquer recurrences are allowed to have empty
base cases. (The empty function trivially satisfies the requirement for a positive lower
bound and finite upper bound.) Of course, an empty base case for a semi-divide-and-
conquer recurrence implies infinite recursion since the recursion set is non-empty.
Perhaps surprisingly, our most interesting proposition about solutions of semi-divide-and-
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conquer recurrences does not require a non-empty base case: A solution T of an
admissible recurrence R satisfies the strong Akra-Bazzi condition relative to R and g for
each tame extension g of the incremental cost of R (equivalently, relative to R and one
such g) if and only if T is locally ®(1). See Section 20 for further details.

Representation of the dependencies as b;x + h;(x). The definition of a semi-divide-
and-conquer recurrence includes representation of the dependencies as functions of the
form x — b;x + h;(x) where 0 < b; < 1 and h; is a real-valued function on the recursion
set I. This is an illusory requirement: Given any real number b and any real-valued
function r on I, we have r(x) = bx + h(x) for h: I —» R defined by h(x) = r(x) — bx.
In particular, the representation is not unique: Let

(D,], a, ..., Ag, bl’ ...,bk,f,g, h’ll ""h’k)

be any semi-divide-and-conquer recurrence. Given bJ, ..., by € (0,1), define real-valued
functions hj, ..., hy on I by h;(x) = (b; — b;)x + h;(x), so that

b;x + h;i(x) = b;x + h; (x).
Then
(D,1,a4,...,ax, by, ..., bg, f, 9, h3, ..., hy)
is also a semi-divide-and-conquer recurrence. Furthermore, the two recurrences represent
the same multi-recurrence and have the same solutions. Either both recurrences are

proper or both are improper.

Now suppose I is unbounded and

h; hi
lim () = lim ﬁ =0

X—00 X X—00 X

hy h;
b, = lim (bi + ‘(x)> = lim (b; + li”) = b},

Observe that

X—00 X X—00
i.e., b; = b;, which implies h; = h;.

Our main results (in Sections 20 and 21) apply to semi-divide-and-conquer recurrences
with a couple additional properties, including low noise (defined in Section 20). If the
recursion set is unbounded (the most interesting case), low noise implies

. hi(x)
lim —= =

X—00 X

0

foralli € {1, ..., k}. Each dependency of such a recurrence has a unique representation
of the form b;x + h;(x) that is consistent with the definition of low noise.
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Floor and ceiling noise. Common examples of dependencies in divide-and-conquer
recurrences are functions of the form x + |bx| and x » [bx] where b € (0,1). The
corresponding noise terms are the functions x = |bx| — bx and x — [bx] — bx.

Dependency graph. The condition b;x + h;(x) < x of a divide-and-conquer recurrence
implies such a recurrence has no circular dependencies: The directed multigraph with D
as its vertex set and with directed edges from all x € I to the vertices

byx + hy(x), ..., bgx + hy(x)
is acyclic.

Requirement that the base case is @(1). Our definition of a semi-divide-and-conquer
recurrence specifies the base case to be ©(1). A broader and arguably more natural class
of recurrences can be obtained by instead simply requiring the base case to be non-
negative. However, our most interesting conclusions about divide-and-conquer
recurrences require the base case to be ©(1). For convenience, we incorporate this
restriction directly into our definition.

In practice, the restriction is usually minor. For a multi-recurrence whose domain is a set
of integers with a finite lower bound, the base case is @(1) if and only if the base case is
positive. Furthermore, roots of a base case are often inessential. For example, the unique
solution T: N — N, defined by T(n) = n for all n € N, of the recurrence

0, forn=0
T(n) = { 1, forn=1
T(In/2]) + T([n/2]), forn>1

is nearly identical to the unique solution T*: Z* —» Z*, defined by T*(n) = n for all
n € Z*, of the divide-and-conquer recurrence

1, forn=1
T*(n) = { 2, forn =2
T(n/2]) + T(n/2]), forn > 2.

The functions T and T* differ only in the exclusion of 0 from the domain of T*. In
particular, they are asymptotically identical.

In contrast, consider the recurrence

0, forn=1
S(n)={ 2, forn =2
2-S(In/2)), forn > 2

defining a function S: Z* — N. Observe that S(2% - 3) = 0 for each k € N. Let D be any
subset of Z* with Z*+\D finite, and let I be a non-empty upper subset of D such that
|n/2] € D forall n € I. Observe that |[D\I| < min[. In particular, D\I is finite. The
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relative complement Z*\I = (Z*\D) U (D\I) is a union of two finite sets and is
therefore also finite. Define S*: D — Z by the recurrence

erin S(n), forn € D\I
=1, .S*(ln/2D),  fornel,
s0 S*(n) = S(n) foralln € D. LetY ={2/-3: j € N}, soY is an infinite set of
positive integers. The intersection Y N I is non-empty because Z*\/ is finite. Lety be
the least elementof Y N1 ,soy = 2™ -3 forsomem € N. Letd = |y/2],sod € D.
Weclaimd € I and d isaroot of S*. If m = 0,theny = 3,s0d = 1 and
|d/2| = 0 & Z*; therefore, |d/2| ¢ D, which implies d & I; furthermore,
S*(d)=S(1)=0. Ifm>0,thenm—1€Nandd =2™1-3€Y;thend & |
because d < y; furthermore, S*(d) = S(d) = 0. The claim is proved. In particular, the
recurrence above defining S* is not a semi-divide-and-conquer recurrence.

Conditional uniqueness and positivity of solutions. As we shall see, a solution of a
semi-divide-and-conquer recurrence need not be unique or positive. Section 13 exhibits
for each x, € [686,10000] an infinitely recursive, semi-divide-and-conquer recurrence
with recursion interval (x,, ). (The recurrence is proper only when x, = 10000.)

Each recurrence in the family has infinitely many solutions. Uncountably many solutions
of each recurrence surjectively map each non-empty open subset of the recursion interval
onto the real line.

Finite recursion significantly constrains the landscape of solutions: Each finitely
recursive semi-divide-and-conquer recurrence has a unique solution, which is positive.
(Corollary 8.5 adds positivity to the existence and uniqueness established by Lemma 8.2
for finitely recursive multi-recurrences.)

Leighton’s recurrrences. Theorems 1 and 2 of [Le] involve recurrences of the form

f(x), forl1 <x <x,

k
TG = Z a;T(bix + hi(x)) + g(x), for x > x,

i=1

where f:[1,x,] = R* is ©(1), g is a non-negative function, h; is real-valued, each q; is
a positive real number, and each b; satisfies 0 < b; < 1. Theorem 1 omits the h;(x)
term, i.e., each h; is identically zero. Theorem 2 allows non-zero h;. There are various
restrictions on the value of x,. In particular, x, > 1.

Neither the domain of g nor the domain of h; is specified in [Le]. Recurrences of this
form require only that those domains contain (x,, ©). However, the function g is
required by [Le] to satisfy Leighton’s polynomial-growth condition, which implicitly
requires domain(g) to contain [b;, ) for each i. Furthermore, condition (2) of
Theorem 2 implicitly assumes the domain of h; contains [x,, ©). In addition, condition
(3) implicitly assumes the domain of h; contains [1, ©) and domain(g) contains the
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interval [b;x + h;(x), x] for all x = 1. In particular, the domains of g and h; must
properly contain (x,, ).

Let D = [1,00) and I = (x,, ). Recurrences that satisfy the hypotheses of Theorem 1
or Theorem 2 are apparently intended to have the property that

(D,1,a4, ..., a1, by, ... by, £, g1, Ralps e Piclr)

satisfies our definition of a divide-and-conquer recurrence.

However, the recurrences in Section 13 with x, < 10000 are mock divide-and-conquer
recurrences that satisfy the conditions of Theorem 2. They have b;x + h,(x) = x for
x = 10000 and by x + h;(x) > x for all x € (x,,10000).

A recurrence is exhibited in Section 19 that satisfies the hypothesis of Theorem 2 but is
not a semi-divide-and-conquer recurrence. Condition (9) of the definition is violated: the
recurrence has b;x + hy(x) < 1 for infinitely many x > x,, i.e., byx + h;(x) € D. In
particular, that recurrence has no solution with the specified domain.

Although [Le] requires the domain of g (and h; in Theorem 2) to properly contain the
recursion interval I and constrains the behavior of those functions outside I, the recursive
definition of T does not depend on the value of g(x) or h;(x) for any x < x,.
Unfortunately, the propositions in [Le] needlessly run aground if g has polynomial
growth on (x,, ) but not on some [b;, ). The situation is illustrated by the second
example in [Le] as explained in Section 6. Condition 3 of Theorem 2 is similarly
problematic.

Replacements for Leighton’s Propositions. Our replacement in Section 11 for
Leighton’s Theorem 1 is applicable to divide-and-conquer recurrences that have zero
noise and satisfy a few mild conditions. Our replacements in Section 20 for Leighton’s
Theorem 2 are applicable to mildly constrained divide-and-conquer recurrences and (with
one exception) mock divide-and-conquer recurrences. By definition of a semi-divide-
and-conquer recurrence, the domains of the incremental cost g and the noise functions h;
are the recursion set in each of our replacements for Leighton’s intended theorems.

The new propositions omit Leighton’s polynomial-growth condition, which is
incompatible with the new domain of the incremental cost g. We assume instead that g
has polynomial growth as defined herein. Condition 2 of Theorem 2 is replaced with an
analogous condition, which does not require domain(h;) to properly contain the
recursion set. (We also replace the upper bound for |h;| with an asymptotic condition.)
Condition 3 is eliminated altogether.
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Relative depth. For each multi-recurrence
R=(D,CIf, A1, ..,1),

with domain D, recursion set I, and dependencies 17, ..., 7: I = D, there is an associated
function u: 2P — 2P defined by

u(B)=BU{x€l:r(x)€Bforeachi}

forall B € D. (2P is the power set of D, i.e., the set of all subsets of D.) Powers of u
represent composition of functions, i.e., u° is the identity map on 22 and u™ = w o u™1!
for all positive integers n.

The function u preserves set inclusion: If A € B € D, then u(4) € u(B), and by
induction, u™(A4) € u™(B) for all non-negative integers n. By definition, B € u(B),
which implies u™(B) € u™*1(B), i.e.,

B=u’B) cu(B) cu*(B) cu3(B) € ---.
Observe that
w(B)=BCSBUI
If m € N such that
u™(B) S BUI,
then
u™iB)cuBul)=uB)vuu(l)c(BUHUlI=BUI

By induction, u™(B) € B U foralln € N.
For each B € D, define a function dg: D U 2P - N U {0} by
0, ifx eB
dg(x) ={n € Z*, ifx eu™(B)and x € u"1(B)

0, ifx € u™(B) foralln € N
forall x € D,
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dg(S) = sup{dp(x) : x € S}

when ¢ # S € D, and dg(¢p) = 0. Observe that
dp(x) = 1+ max dp(r;(x))

<i<

forall x € I — B. (If x € I with dg(x) = oo, then dB(ri(x)) = oo for some i, and the
equation above is © = 1 + .) We have dg(x) € {0, o} for all x € D — I because

u"(B)n(D-HcBulhnDOD-1)=B-1<B=u%B)
foralln € N.

If there exists t € D with 0 < dg(t) < oo, thent € — B,and dz(t) =1 + dB(rl-(t))
for some index i. Given the existence of £, a simple inductive argument shows that for
each integer m satisfying 0 < m < dg(t), there exists z € D with dg(z) = m.

The function dp is monotonically increasing relative to set inclusion: If V € W € D,
then dg (V) < dg(W). Similarly, dg(X UY) = max(dg(X),ds(Y)) forall X,Y € D.

For each x € D, the quantity dg(x) is called the recurrence’s (maximum) depth of’
recursion at x relative to B. Let S € D. If dg(S) < oo, then there exists y € S with
dg(S) = dg(y), and dg(S) is called the maximum depth of recursion on S relative to B,
and we say the recurrence has bounded depth of recursion on S relative to B; otherwise,
the recurrence has unbounded depth of recursion on S relative to B.

The terminology here may seem upside down to some readers. The quantity dg(x) might
be regarded instead as the height of x above B relative to the recurrence. Nonetheless,
we shall continue in our use of “depth”.

We are interested in depth of recursion relative to a subset B of D only when D — [ € B
and r;(B N I) € B for each i. Otherwise, “depth of recursion relative to B” is a
misnomer.

We sometimes use d(x) and d(S) as shorthand for dj,_;(x) and dp_;(S) respectively
where x € D and S € D. Without further qualification, depth of recursion is relative to
D — I, the domain of the base case. The recurrence is finitely recursive if d(x) < oo for
all x € D; otherwise the recurrence is infinitely recursive. Of course, an empty base case
implies infinite depth of recursion at each element of D.

The depth-of-recursion functions d and dp are determined by the choice of recurrence.

The recurrence associated with a particular reference to d or dg should be clear from
context.

114



8. Depth of Recursion

Suppose T is a solution of the multi-recurrence R. For x € D with d(x) < oo, the
quantity d(x) is roughly proportional to the maximum call stack height during the
recursive computation of T'(x) provided the computation of f, A, and ry, ..., 1 is non-
recursive. For S € D with d(S) < oo, the quantity d(S) is similarly related to the
maximum call stack height for the restriction of T to S. Of course, stack overflow is
associated with d(x) = oo and d(S) = oo.

The depth-of-recursion function d for the multi-recurrence R satisfies the following

recurrence:
0, forx e D —1

<i<

Of course d is also the depth-of-recursion for this auxiliary recurrence.

(If k = 1 and R represents a semi-divide-and-conquer recurrence, then the recurrence
satisfied by d resembles a semi-divide-and-conquer recurrence, but the definition of such
a recurrence is violated by range(d |D\,) = {0}.

Lemma 8.1. Suppose
(D,C, I, f, A1y, o, Tk)

is a multi-recurrence. Define E,, = {x € D : d(x) <n}, I, =1 nE,, and

Rn = (En' C' In' fﬂ’”]nxckirllln' "'Jrklln)

for each non-negative integer n. Then R,, is a multi-recurrence with a unique solution T;,.
Furthermore,

Tn+1|En = Th.

Proof. (Of course, E,, = u™(D — I).) The set I,, is obviously contained in E,, as required
by the definition of a multi-recurrence. The identity D — I = E; = {x € D : d(x) = 0}
implies] ={x € D:d(x) > 1}and I, ={x € D : 1 < d(x) < n}. (Notice that [, = 0.)
We conclude that E,, — I, = D — I. In particular, E,, — I,, is the domain of f.

By definition of a multi-recurrence, the function A maps I X C¥ to C. The set
containment I,, € I implies I,, X C¥ € I x C¥, so the restriction of A to I, X C¥ is defined
and maps I, X C* to C as required by the definition of a multi-recurrence. Finally,

I, € I = domain(r;)

and r;(I,) € E,, foralli € {1, ..., k}, i.e., the restriction of each r; to E,, is defined and
maps I, to E,, as required. Therefore, R, is a multi-recurrence.

Since E, = D — I, the function Ty = f is the unique solution of R,. Let n be a non-
negative integer such that R,, has a unique solution T,,. Since E,, € E,,; and
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(%), .., (x) €EE,

for all x € E,,; — E,, the multi-recurrence R,,,; has the unique solution T}, ;1: E,,41 = C
defined by T11|g, = T, and

The1(x) =2 (x: Tn(rl(x))' Ty Tn(rk(x)))

forallx € E,1 — E,, = I,41 — I,. The lemma follows by induction. O
Lemma 8.2. Every finitely recursive multi-recurrence has a unique solution.

Proof. Let
R=(D,CIf, A1, ..,1)

be a finitely recursive multi-recurrence. Define E,,, R,,, and T;, as in Lemma 8.1. Finite

recursion implies
o= Jn

n=0

A function T: D — C is a solution of R if'and only if T|g, is a solution of R,, for each
non-negative integer n, i.e., T|g, = T, for all such n. Furthermore, there can be at most
one such function.

Suppose «a is a non-negative integer. We have the trivial identity To|g, = T,. If § is an
integer that satisfies § = « and Tg|g, = Ty, then

Tﬁ+1|Ea = (Tﬁ+1|Eﬁ) |Ea = T[)’lEa = Tq-
By induction, T} |g, = T, for all integers y = a.
Define T by T(x) = T4y (x) forall x € D. If w € E,, then d(w) < n, so
TW) = Tauy (W) = Talsggy W) = Tu(W).
Therefore, T|g, = T, as required. O

Lemma 8.3. If D is the domain of a multi-recurrence, and A € B € D, then

dp(x) < dy(x) < dp(x) + ds(B)
forall x € D and
dg(S) < du(S) < dp(S) + da(B)
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forall S € D. In particular, if the recurrence has bounded depth of recursion on S and B
relative to B and A, respectively, then the recurrence has bounded depth of recursion on S
relative to A.

Proof. Since u™(A) < u™(B) for each non-negative integer n, we conclude that
dg(x) < d,(x) forallx € D. If dg(x) < 0 and d4(B) < oo, then A # ¢, B # ¢, and

x € uds@(B) c 5™ (udA(B) (A)) = ud800+da®) (4),
SO
ds(x) < dp(x) + du(B).

The preceding inequality is also valid if dg(x) = o or d4(B) = co. Combining
inequalities, we obtain

dp(x) < dy(x) < dp(x) +ds(B)
forall x € D, so

dp(S) < ds(S) < dp(S) +da(B)

for all S € D. (The inequality above is 0 < 0 < 0 + d4(B) if S = ¢p.) The remaining
assertion follows from the final inequality above and the definition of bounded depth of
recursion. O

We now turn our attention to divide-and-conquer recurrences and (temporarily) mock
divide-and-conquer recurrences. Our discussion about depth of recursion is applicable to
them via their representations as multi-recurrences. We shall provide simple, naive,
crude bounds to solutions of many such recurrences in terms of depth of recursion. Of
course, more sophisticated bounds for a large class of such recurrences will be provided
in later sections.

Notation. For the remainder of this section, T is a (not necessarily unique) solution of a
semi-divide-and-conquer recurrence

R = (D,I,al, ...,ak,bl, ...,bk,f,g,hl, ""h’k)

with domain D, recursion set I, base case f, and incremental cost g. (Starting with
Lemma 8.6, we assume R is proper, i.€., is a divide-and-conquer recurrence.) We do not
assume finite recursion. Let 7y, ...,7: 1 = D be the dependencies of R, i.e.,

r;(x) = bix + hy(x)
forall x € I.

Define y = inff andY =sup f,i.e.,y =infT(D\I) and Y = supT(D\I) if D # I, i.e.,
R has a non-empty base case, 1.e., R is finitely recursive at some element of D. Define

y=1landY = 1if D =1, i.e., R has an empty base case, i.e., R is infinitely recursive at
every element of D. Observe that y and Y are lower and upper bounds, respectively, for
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f, which is T|p\;, regardless of whether D = I or D # I. By definition of a semi-divide-
and-conquer recurrence,
0<y<Y<oo

k
A=Zai,

i=1

Define

so A > 0. Let U = max(4,1). Asusual, d is the depth-of-recursion function for R
relative to D\I.

Define the function G: D — [0, +oo] by

_fsupg(n(0,x]), forxe€l
Glx) = { 0, for x € D\I.

The function G is monotonically increasing, and 0 < g(x) < G(x) foreachx inl. If g
is bounded on each bounded subset of I, then the function G is real-valued, i.e.,

G(x) < oo forall x € D. (The converse is true if I is unbounded or has a maximum
element.) If I contains only integers, then each bounded subset of [ is finite, so g is
bounded on bounded sets and G is real-valued. Alternatively, if g has polynomial
growth, then Corollary 2.23 combines with inf/ > 0 to imply g is bounded on bounded
sets and G is real valued.

Lemma 8.4.
infT|g, = y-min{1,4"} >0

for each non-negative integer n where
E,={x€D:d(x)<n}.

Proof. Observe that
y -min{1,4%} =y

is a positive lower bound of T|, because E, = D\I and A° = 1.
Suppose m is a non-negative integer such that
infT|g, =y -min{1,A™} > 0.
The set Ep,+1\E, is contained in the recursion set, I, and 7;(E,,, +1 \Ey,) is contained in

E,, foralli € {1,..,k}. Since ay, ..., a; and A are positive and the incremental cost, g, is
non-negative, we conclude that
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k k
T(z) = z a;T(r;(z2)) + g(z) = (Z ai> -y -min{1,A™} = Ay - min{1, A™}

i=1 i=1

=y -min{4, A™*1}

forall z € E,;; . 1\E;,. (Of course, E,,,,1\E;, may be empty, in which case there is no
such z.) Therefore,
infT|g, ., =ya

where

a = min{1, 4, A™, Am+1},
IfA > 1, then

a = 1 = min{1, A™*1},

If A <1, then

a = A™*! = min{1, A™*1}.
Therefore,

infT|g, ., =y min{1,A™*} > 0.

The lemma follows by induction. O

Corollary 8.5. Every finitely recursive semi-divide-and-conquer recurrence has a unique
solution, which is positive.

Proof. The proposition follows from Lemmas 8.2 and 8.4. O

Lemma 8.6. Assume R is proper. If F is an initial subset of D and g is bounded on
F N1, then T|g, has a finite upper bound for each non-negative integer n where

E,={x€eF:d(x)<n}.

Proof. Let W be a finite upper bound for the restriction of g to F N I, and let E = D\,
i.e., E is the domain of the recurrence’s base case, f. The function f is T|z and has a
finite upper bound by definition of a divide-and-conquer recurrence. The set F is
contained in E, so T|g, also has a finite upper bound.

Suppose m is a non-negative integer for which the restriction of T to F,, has a finite
upper bound S. Observe that F,,,, ;\F, is contained in the recursion set, I. Furthermore,
7;(Fins1\Fy) is contained in F,, for all i € {1, ..., k} because the recurrence is proper and
F is an initial subset of D. By definition,

k

T(2) = ) aT(:(2) +g(@)

=1

forall z € F,,,.1\F,. (Of course, F,, 1 \F, may be empty, in which case there is no such
z.) Since aq, ..., ay are positive and T'(r;(z))) < S for each index i,
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k
T(z)SZai5+g(z)SAS+W<oo

i=1

for each such z. The maximum of S and AS + W is a finite upper bound for the
restriction of T to F,,, ;. The lemma follows by induction. O

Corollary 8.7. Assume R is proper. If F is an initial subset of D with sup F < oo, and g
has polynomial growth on F N [, then T |, has a finite upper bound for each non-

negative integer n where
E,={xeF:d(x) <n}.

Proof. Of course,
sup(FNI) <supF < o
and
inf(F N 1) = infI > 0.

Corollary 2.23 implies the polynomial-growth function g|zn; is bounded, i.e., g is
bounded on F N I. The proposition follows from Lemma 8.6. O

We now obtain a more explicit upper bound.

Lemma 8.8. Assume R is proper. If x € D such that d(x) < oo and G (x) < oo, then

6-1

T(x) < U5Y+G(x)-ZAf<oo
j=0

where 6 = d(x). (The sum is interpreted as zero when § = 0.)

Proof. Finiteness of G(x) combines with § € N and A, U,Y € R* to imply the finiteness
assertion of the lemma, i.e., the rightmost inequality in the asserted chain of inequalities.

We prove the remaining inequality by induction on the depth of recursion. If § = 0, then
the sum is zero, x € D\I, U® = 1, and G(x) = 0. Then

5-1
T(x) < Y= U5Y+G(x)-ZAf
j=0

as required.

Now suppose § > 0 and
d(z)—-1

T(z) < UDY +G(2) - Z Al
Jj=0
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for all z € D with d(z) < § and G(z) < 0. Positivity of § implies x € I. Define
§; =d(r;(x)) foralli € {1, ..., k}, so §; < § — 1. By definition,

k

T() = ) aT @) + g@).

i=1

By definition of a divide-and-conquer recurrence, 7;(x) < x for each index i. The
function G is non-negative and monotonically increasing, so

0<G(ri(x)<G(x) <o

for each i. The inductive hypothesis combines with g(x) < G (x), positivity of a4, ...

and finiteness of G (1 (x), ..., G (1 (x) to imply

k 6i—1
T(x) < Z a;-| USY + G(ri(x)) - ZAJ‘ + G (x).
i=1 j=0

Observe that
5i-1 5-2
a;G(r;(x)) - Z Al < a;G(x)- z Al
j=0 j=0

for all thati € {1, ..., k} since a;,A € R* and §; — 1 < § — 2 for each index i.

,ak

We also have a;U%Y < a;U%'Y because a; and Y are positive, U > 1 and §; < § — 1.

Therefore,

k 6-2

T(x) sz a; - U5‘1Y+G(x)-ZAf + G(x)

i=1 j=0

5-2
=A- U5—1Y+G(x)-ZAf + G (x)
j=0

6—-1
= AUSY + G (x) - Z A
j=0

Since 0 < A < UandY > 0, we have AU~y < U%Y, so
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5—1
T(x) <USY +G(x)- ZAj.
j=0

The lemma follows by induction. O

Since A = 1 for some divide-and-conquer recurrences, the expression

5—-1
Al
—

-

cannot be replaced by (A6 — 1)/(A — 1) in Lemma 8.8.

M pg. Suppose F is a non-empty initial subset of D, and g is bounded on F N [, i.e.,
sup G(F) < . Since G is non-negative and F is non-empty, we conclude that

sup G(F) = 0, i.e., sup G(F) is a non-negative real number. For each such F, define a
real-valued function Mr: N = R on the non-negative integers by

n—1

Mp(n) = U™ + (supG(F))- ) AJ.
2

When n = 0, the sum is interpreted as zero, so Mp(0) = U°Y =Y. The function My, is
positive and monotonically increasing because A and Y are positive, U = 1, and

sup G(F) = 0. As a minor convenience, we also define the positive, constant, function
Mg (n) = 1 on the non-negative integers; of course, My is also monotonically increasing.

The following simple adaptations of Lemma 8.8 provide a more uniform upper bound for
T (x) when g is suitably constrained:

Corollary 8.9. Assume R is proper and let n be a non-negative integer. If F is an initial
subset of D, and g is bounded on F N I, then

T(x) < Mp(n)
for all x € F that satisfy d(x) < n.
Proof. The function M is monotonically increasing, so Lemma 8.8 combines with

G(x) <supG(F) < w
and
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d(x)-1
Z Al >0
j=0
to imply
T(x) < MF(d(x)) < Mg(n)
for all such x. O

Corollary 8.10. Assume R is proper and let n be a non-negative integer. If F is an
initial subset of D with sup F < oo, and g has polynomial growth on F N I, then

T(x) < Mgz(n)
for all x € F that satisfy d(x) < n.

Proof. The proof is the same as for Corollary 8.7, except with Corollary 8.9 playing the
role of Lemma 8.6:
sup(FNI) <supF < o
and
inf(F nI) = infI > 0.

Corollary 2.23 implies the polynomial-growth function g|zn; is bounded, i.e., g is
bounded on F N I. The proposition follows from Corollary 8.9. O

Corollaries 8.9 and 8.10 provide explicit finite upper bounds for T under the assumptions
of Lemma 8.6 and Corollary 8.7, respectively. The bounds were derived independently
of Lemmas 8.6 and Corollary 8.7, thereby making those propositions redundant (but
instructive).
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Our main propositions about semi-divide-and-conquer recurrences require solutions that
are locally ©(1). We start with a convenient, obvious characterization of such solutions:

Lemma 9.1. Let T be a solution of a semi-divide-and-conquer recurrence with domain D
and recursion set I. The following statements are equivalent:

(1) T is locally ©(1).
(2) T|; is locally O(1).
(3) T|y = 0(1) for every subset Y of D with supY < oo.

Proof. (1) = (2): By definition, I is a subset of D. If X is a bounded subset of I, then X
is also a bounded subset of D, so T|y = ©(1) by definition of a locally ©(1) function.

(2) = (3): If Y € D such that supY < oo, then sup(Y NI) < supY < oo and

inf(Y N I) = infl > 0, so Y NI is bounded, which implies T|yn; = ©(1). By definition
of a solution of a semi-divide-and-conquer recurrence, T|p_; = 0(1). We conclude from
Y—I1<SD—1IthatT|,_; = 0(1). Theidentity Y = (Y N 1) U (Y —I) implies

Tly = 0(1).

(3) = (1): If S is a bounded subset of D, then sup S < oo, which implies T|g = 0(1).
Therefore T is locally ©(1). 0

Definition. A semi-divide-and-conquer recurrence satisfies the bounded depth condition
if d(S) < oo for every bounded subset S of the recurrence’s domain (where d is the
depth-of-recursion function for the recurrence).

Of course, satisfaction of the bounded depth condition implies finite recursion. In the
same spirit as Lemma 9.1, we identify obviously equivalent formulations of the bounded
depth condition:
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Lemma 9.2. Let R be a semi-divide-and-conquer recurrence with domain D and
recursion set I. The following statements are equivalent:

(1) R satisfies the bounded depth condition.
(2) d(X) < oo for every bounded subset X of I.
(3) d(Y) < oo for every subset Y of D with supY < oo,

Proof. Let d be the depth-of-recursion function. (1) = (2): By definition, I is a subset
of D. If X is a bounded subset of I, then X is also a bounded subset of D, so d(X) < o
by definition of the bounded depth condition.

(2) = (3): IfY is a subset of D such that sup Y < oo, then sup(Y N I) < supY < oo and
inf(Y N I) = infl > 0, so Y N I is bounded, which implies d(Y N I) < co. The setY is
the unionof Y N/landY — 1, so

d(Y) =max(d(Y n1),d(Y = 1)) = max(d(Y n1),0) =d(Y n ) < oo

(3) = (1): If S is a bounded subset of D, then sup S < oo, which implies d(§) < .
Therefore, R satisfies the bounded depth condition. 0

Lemma 9.3. Let T be a solution of a semi-divide-and-conquer recurrence R with domain
D and recursion set I, and suppose R has bounded depth of recursion on some subset S of
D. Then T|s has a positive lower bound. If R is proper and the incremental cost is
bounded on an initial subset of I containing S N I, then T|s = O(1).

Proof. Let d be the depth-of-recursion function for R and letn = d(S), son € N.
Define
E={x€D:d(x)<n},

so E contains S. Lemma 8.4 implies T|; has a positive lower bound, which is also a
lower bound for T'|s.

Suppose R is proper and the incremental cost is bounded on some initial subset H of [
containing S N I. Define F = H U (D\I), so F is an initial subset of D containing S.
Lemma 8.6 combines with H = F N[l and S € E N F to imply

supT|s < supT|gnr < 0,
soT|s = 0(1). O

Corollary 9.4. Let R be a semi-divide-and-conquer recurrence that satisfies the bounded
depth condition. Then R has a unique solution T, which has a positive lower bound on
each bounded subset of its domain. Furthermore, T is locally ©(1) if R is proper and the
incremental cost of R is bounded on each bounded subset of the recursion set.
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Proof. Satisfaction of the bounded depth condition implies R is finitely recursive.
Corollary 8.5 (or Lemma 8.2) implies R has a unique solution T.

Let S be a bounded subset of the recurrence’s domain, so d(S) < oo where d is the depth-
of-recursion function. Lemma 9.3 implies infT|g > 0.

Let g be the incremental cost of R, and let I be the recursion set. Suppose R is proper
and g i1s bounded on each bounded subset of I. Let J be the minimum initial subset of [
containing S N . The set J is bounded because either /] = @, or

inf/ =infl > 0
and
sup/ = sup S < oo,

Now g is bounded on J. Lemma 9.3 implies T|s = ©(1). Therefore T is locally ©(1). O

The cheap, redundant variant below of Corollary 9.4 is more directly applicable for some
purposes. For future convenience, we include some redundancy in the next couple
propositions and elsewhere in this section.

Corollary 9.5. If R is a semi-divide-and-conquer recurrence that satisfies the bounded
depth condition, then R has a unique solution T. Furthermore, T is locally O(1) if R is
proper and the incremental cost of R has polynomial growth.

Proof. Corollary 9.4 (or Lemma 8.2 or Corollary 8.5) implies R has a unique solution T.
Suppose R is proper, and the incremental cost has polynomial growth. Let I be the
recursion set of R. If S is a bounded subset of I, then sup S < oo and

infS > infl > 0.

If the incremental cost, g, has polynomial growth, then Corollary 2.23 implies g is
bounded on each such S. The proposition follows from Corollary 9.4. O

Examples of finitely recursive divide-and-conquer recurrences that violate the
bounded depth condition but have locally ®(1) solutions. Let t,, t,,t,, ... be any

increasing sequence of real numbers with t; = 1 and

lim ¢, = 2.
n—->oo

Define a sequence X,, X;, X5, ... of disjoint half open intervals by X,, = [t,, t,,4+1), so that

[1,2) = Oxn
n=0

and
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[tll 2) = U XTl'
n=1

Foralln € Z*, define ¢,: X, = X,_1 by @, (x) = t,_4 forall x € X,,. Define
@:[t,2) - [1,2) by |y, = @, foralln € Z*, and define h: [t;, ) — R by

_(p(x) —x/2, for x € [ty,2)
h(x) = { 0, for x € [2, ),

so that

(o), for x € [ty,2)
x/2+h(x)—{x/2’ for x € [2,0).

LetD =[1,0),1 = [t;,©),a=1,and b = 1/2. Define f: X, > Rby f(x) =1, and
let g:1 — R be identically zero. Then

(D;Ipa,b;f;g;h)

is a divide-and-conquer recurrence. (Our definition in Section 20 of an admissible
recurrence is also satisfied.)

For each non-negative integer n, we have d(x) = n for all x € X,,. Therefore, d(x) < oo
for all x € [1,2) where d is the depth-of-recursion function. We also conclude that
d(S) = o for S = [1, 2), which implies the bounded depth condition is not satisfied.

If x > 2 and m = |log, x|, we conclude from

2M < x < 2mHL
1.e.,

that x/2™ € X,, for some non-negative integer n. Since x/2/ > 2 for each integer
Jj < m, the depth of recursion at x is m + n, which is finite. Therefore, the recurrence is
finitely recursive. By Corollary 8.5, the recurrence has a unique solution 7', which
satisfies

1, for x € X,

T(x) = T (; + h(x)>, forx € D — X,.

Induction on d(x) shows that T(x) = 1 for all x in the domain D of the recurrence. In
particular, T is locally ©(1) although the bounded depth condition is not satisfied.

Suppose we modify the recurrence by letting a = 1/2 and defining g: I — R to be the
constant function g(x) = 1/2, i.e.,
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1, for x € X,

T(x): 1 X 1
2T<2+h(x)>+2, forx € D — X,.

The new divide-and-conquer recurrence has the same depth-of-recurrence function and
also violates the bounded depth condition. Once again, the recurrence is finitely
recursive with a unique solution T, which is locally ©(1). Indeed, T(x) = 1 for all x in
the domain D. (This recurrence is also admissible.)

Finite recursion of a divide-and-conquer recurrence with polynomial-growth
incremental cost does not imply a locally ®(1) solution. Consider the (admissible)
divide-and-conquer recurrence

1, for x € X,

T(x) = T(;+h(x)>+1, forx € D — X,

where D, X,,, and h are defined as in the two previous examples. Lemma 2.3 implies the
incremental cost has polynomial growth. This recurrence is also finitely recursive with a
unique solution T. Unlike the aforementioned examples, T (x) = d(x) + 1 forall x € D
where d is the depth-of-recursion function. Therefore T is unbounded on [1, 2), which
implies T is not locally ©(1).

Definition. A semi-divide-and-conquer recurrence
(D,1,a4,...,a3,by, ... by, f, g, Ay, o, hy)
satisfies the ratio condition if there exists a real number < 1 such that
b;x + h;(x) < Bx

forallx € I and alli € {1, ..., k}. The recurrence satisfies the strong ratio condition if
there exist 0 < a < 8 < 1 such that

ax < b;x + hij(x) < Bx
forallx € I andalli € {1, ..., k}.
Of course, the ratio condition is equivalent to the existence of 4, ..., Bi such that §; < 1
and b;x + h;(x) < B;x forall x inI and alli € {1, ...,k}: Given B4, ..., By, the ratio

condition is satisfied with § = max{p, ..., Bx}. Conversely, if the ratio condition is
satisfied, let 8; = B for each i.
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The strong ratio condition a priori implies the ratio condition. Similar to the ratio
condition, the strong ratio condition is satisfied if and only if there exist a4, ..., a; and

B1, -, B suchthat 0 < a; < B; < 1 and a;x < b;x + h;(x) < B;x for all x in I and all

i €{1,..,k}: Givenay, ..., a; and B, ..., Bi, the strong ratio condition is satisfied with
a = min{ay, ..., a} and f = max{p, ..., Bi}. Conversely, if the strong ratio condition is
satisfied, let @; = a and ; = S for each i.

The ratio condition allows the uninteresting possibility that f < 0, in which case the
maximum depth of recursion is 1.

The ratio condition is equivalent to

max | sup | b; + <1
1<i<k x€l X

The strong ratio condition is equivalent to the combination of the preceding inequality

and
h.
min (inf (bi + lJ(CX)>> > 0.

1<i<k \ x€l
Lemma 9.6. If a semi-divide-and-conquer recurrence satisfies the ratio condition, then it
is proper, satisfies the bounded depth condition, and has a unique solution T
Furthermore, T is locally ©(1) if the incremental cost has polynomial growth.

Proof. Suppose
R = (D, 1, a4, ...,ak, bl' ...,bk,f,g, h’l’ ""h’k)

is a semi-divide-and-conquer recurrence that satisfies the ratio condition. Define real-
valued functions 7y, ..., 1, on I by ;(x) = b;x + h;(x). By definition of the ratio
condition, there exists f < 1 such that r;(x) < Bx forall x in and all i € {1, ..., k}.
Of course, fx < x, so R is proper.

By Corollary 9.5, we need only show that R satisies the bounded depth condition. Let S

be any bounded subset of D. We will show R has bounded depth of recursion on S, i.e.,

d(S) < o where d is the depth-of-recursion function.

If B <0,thenr;(x) < Oforallx € [ andalli € {1, ..., k}. By definition of a semi-

divide-and-conquer recurrence, we have infl > 0 and r;(x) € D for all such x and i, so

r;(x) € D — I, which implies d(x) = 1. By definition, I is non-empty, so d(I) = 1 and
d(§) <d(D) = max(d([),d(D\I)) = max(1,0) = 1.

We may now assume 8 > 0. There exists t € (0,infI) because infl > 0. Define

E; =D N (—oo,t/p']
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for each non-negative integer j. In particular,

E, =D nN(—oo,t] € D\I,
so d(E,) = 0. Let m be any non-negative integer for which d(E,,) < m. Observe that

r;(x) < pBx < t/B™,
ie,r(x) EE,, forallx e INE,,  andalli € {1,...,k}, so
dix) =1+ 1r£1iisr}( d(ri(x)) <m+1
for all such x. Therefore, d(I N E,,;;) < m+ 1 and
d(Epyql) = max(d(Em+1\I), d(Epeq N I)) <max(0om+1)=m+ 1.

By induction, d(E,,) < n for each non-negative integer n.

If S is a bounded subset of D, then there exists a non-negative integer § such that
supS < t/B%,s0S S Eg, which implies

d(S) < d(Es) < 6§ < oo.

A divide-and-conquer recurrence that satisfies the bounded depth condition but
violates the ratio condition. Let D = [1,0) and I = [2, ). Define increasing
functions u: Z* - [1/2,1) and 1: Z* - [2,4) by

n
n+1

pun) =

and A(n) = 4u(n), sou(1) =1/2,A(1) = 2, and

2m))
@ =u(mA(m) € [1,A(n)) c [1,4).
Define r: 1 — D by
_ (x%/4, forx € A(Z")
r(x) _{ x/2, forx ¢ A(ZY).

Observe that 1 < r(x) < x for all x € I; in particular, r(x) € D. Define h:1 — R by
h(x)=r(x)—x/2,

1e.,
r(x) =x/2 + h(x).
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Then h(x) = 0 for all x € INA(Z"). In particular, h(x) = 0 forall x > 4. Leta € R*
and ¢ € [0, ), so
1, forx e D —1

T(x) = aT <§ + h(x)) +c, forx €1

is a divide-and-conquer recurrence with domain D and recursion set I. (Our definition in
Section 20 of an admissible recurrence is also satisfied.) Let d be the depth-of-recursion
function for the recurrence, so

0, forx e D —1
d(x) = {d(r(x)) +1, forx € I.
Observe that
r(t)e[1,2)=D -1

forall t € [2,4)\A(Z%), so d(t) = 1 for all such t. Givenu € A(Z™"), there exists

j € Z* such that u = A(j) and
42

(+1)?

J2+1# (G +1)7

r(u) = € [1,4).

Observe that

SO
r(u) € [1L,H\A(ZY) =[1,2) U ([2, )\A(Z)).

Then d(r(u)) € {0,1}, which implies d(u) < 2. Ifu = 2,i.e.,u = A(1), then r(u) = 1,
sod(u) = 1;ifu # 2, then u > 2 and log, u > 1. Therefore,

d(u) <1+log,u
forall u € A(Z*). Of course,
dv)=0<1+log,v
for all v € [1,2). Suppose m is positive integer such that
dlw) <1+log,w
forallw € [1,2™). Let
y I= [1, 2m+1)\[1’ Zm) — [Zm, 2m+1)’

soy €l. Ify € A(Z"), then
diy) <1+log,y

as previously demonstrated. If y ¢ A(Z*), then

r) =2 el1,2m,
which implies
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diy)=1+d(y/2) <2 +log,(y/2) =1+1log,y.
Therefore,
d(z) <1+log,z
forall z € [1,2™*1). By induction,

d(x) <1+log,x
for all

xeLﬁLﬂ)zu
n=1

Therefore, the recurrence satisfies the bounded depth condition. (In particular, the
recurrence is finitely recursive.) Observe that

r(A(n n
sup —( ( )) = =1
nezt A(n) nez+n+ 1
and
r(x) 1
x 2
forallx € I — A(Z1), so
r(x) "
sup—— =
xEII) X

In particular, the ratio condition is violated.

The ratio and bounded depth conditions and the requirement that recursion sets
have positive lower bounds. Lemma 9.6 is inapplicable to the recurrence

1, forx =0
= X
T(x) T (E) +1, for x € (0, )

because our definition of a semi-divide-and-conquer recurrence is violated: the interval
(0, ) does not have a positive lower bound. The recurrence otherwise satisfies our
definition of the ratio condition. However, the recurrence is infinitely recursive at each
positive real number. Furthermore, there are infinitely many solutions and none of them
are locally ©(1); indeed, none of them are positive functions.

The simple observation below will prove useful in Section 20:
Lemma 9.7. Assume T is a locally ©(1) solution of a semi-divide-and-conquer

recurrence
R = (D, I, aq, ...,ak, bl' ...,bk,f,g, h’l’ ""h’k)
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and J is a non-empty upper subset of /. Then

S = (D,],al, ""ak'bl’""bk’TlD—]’glj’hll]’""h’klj)

is also a semi-divide-and-conquer recurrence with T as a solution. If R satisfies one or
more of the bounded depth, ratio, and strong ratio conditions, then S also satisfies each of
those conditions satisfied by R. If R is proper, then S is proper.

Proof. The set ] 1s an upper subset of D because ] is an upper subset of the upper subset [
of D. The recursion set I has a positive lower bound by definition of a semi-divide-and-
conquer recurrence. Thus inf] > infl > 0. Since J is non-empty, J satisfies the
requirements of a recursion set. Since sup(D — J) < inf] < co, Lemma 9.1 implies
T|p—; is ©(1), i.e., T|p_; has a positive lower bound and finite upper bound. Satisfaction
of the other requirements for a semi-divide-and-conquer recurrence with solution T is
obviously inherited by S from R.

Suppose R satisfies the bounded depth condition, and X is a bounded subset of D. Let
dp_; and dp_; be the depth of recursion functions for R relative to D — I'and D — J,
respectively. The set D — [ is contained in D — J because ] is contained in /. Lemma 8.3
and satisfaction of the bounded depth condition by R imply

dp_;(X) < dp_;(X) < oo.

Let d* be the depth of recursion function for S. We conclude from d*(X) = dp_;(X)
that d*(X) < oco. Therefore S also satisfies the bounded depth condition.

The remaining assertions are (even more) trivial: If R satisfies the ratio condition, then
J € I implies S inherits satisfaction of the ratio condition. If S satisfies the strong ratio
condition, then /] € I implies S inherits satisfaction of the strong ratio condition.
Similarly, S is proper if R is proper. O
Lemma 9.8. Suppose

R = (D, I, a, ..., Ag, bl' ey bk,f,g, h’l’ ey h’k)

is a semi-divide-and-conquer recurrence with unbounded recursion set / such that

. h; (x)
lim =

X—00 X

0

forall i € {1, ..., k}. There exists a non-empty upper subset J of I and real numbers a
and B with 0 < @ < f < 1 such that

ax < b;x + hij(x) < Bx
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forall x € Jand alli € {1, ..., k}.

Proof. (Of course, the limit is taken over elements of /.) The unbounded set [ is positive
by definition, so indeed sup I = oo as required by the limit. There exist v, ..., v, € I such

that
(bi 1-— bl)
"2 2

forallx € I N (v;, o) and all i € {1, ..., k}. Lety = max(vy, ..., v ), and define
J =1n(y,), so that ] is an upper subset of I. The set ] is non-empty because
supl = oo. Foralli € {1, ...,k}, we have ] € I N (v;, ), which implies

h;(x) <
X

h;(x) <mi (bi 1- bi)
. min >3
and
b; b; h;(x) h; (x) h;(x) 1-b; 1+b;
> b; 2<bl ‘ <b; + X <b; + o < b; + > >
forall x € J. Let
. <b1 bk) 4 8= (1 + by 1+ bk)
a = min > and f = max ST .

Then0 < a < f <1 and
ax < b;x + hij(x) < Bx

forallx € Jand alli € {1, ..., k}. O
Corollary 9.9. Suppose T is a locally ©(1) solution of a semi-divide-and-conquer
recurrence

R = (D,I, aq, ...,ak,bl, ...,bk,f,g,hl, ""h’k)

with unbounded recursion set I such that

. h; (x)
lim =

X—00 X

0

forall i € {1, ..., k}. There exists a non-empty upper subset J of I such that the semi-
divide-and-conquer recurrence

S = (D,],al, ""ak'bl’""bk’TlD—]’glj’hll]’""h’klj)

is proper and satisfies the bounded depth and strong ratio conditions. Furthermore, T is
the unique solution of S.
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Proof. (The unbounded set I is positive by definition, so sup [ = oo as required by the
limit.) By Lemma 9.8, there exist a non-empty upper subset /] of I and real numbers a
and B with 0 < @ < f < 1 such that

ax < b;x + hij(x) < Bx

forallx € Jand alli € {1, ...,k}. Lemma 9.7 implies S is indeed a semi-divide-and-
conquer recurrence with T as a solution. The inequalities above imply S satisfies the
strong ratio condition. Lemma 9.6 implies S is proper, satisfies the bounded depth
condition, and has a unique solution. O

Lemma 9.10. Let
R = (D, I, a, ..., Ag, bl' ...,bk,f,g, h’l’ ""h’k)

be a semi-divide-and-conquer recurrence such that either the recursion set / is bounded or

. h; (x)
lim =

X—00 X

0

foralli € {1, ..., k}. Let d be the depth-of-recursion function for R, and define
E,={x€eD:d(x) <n}

for each non-negative integer n. Then sup F, < oo for all such n. If the incremental cost,
g, has polynomial growth, then

(1) If T is a solution of R, then T is ©(1) on E, for alln € N.

(2) If R satisfies the bounded depth condition, then R has a unique solution, which is
locally ©(1).

Proof. (By definition, inf] > 0; if I is unbounded, then sup I = oo as required by the
limit.) We first show that sup F,, < oo for all n € N. By definition of a semi-divide-and-
conquer recurrence, the recursion set I is a non-empty upper subset of D, so

supF, <supD = supl.

for all n € N. Thus we may assume sup [ = c. Lemma 9.8 implies there exists
a € (0,1) and a non-empty upper subset / of I such that

ax < b;x + h;(x)
forall x € Jand alli € {1, ..., k}. Of course, J is an upper subset of D because I is an

upper subset of D. Furthermore, inf]/ > 0 because infl > 0. Observe that F; = D — I,
o)
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) ) inf]
sup F, <infl <inf] = 0
Suppose m € N such that
inf]
supF, < e

Ify € Fpopq1 NJ, then b;y + h;(y) € Ey, foralli € {1, ..., k}, so

inf]
ay < by +hi(y) < ey

Since J is an upper subset of D and inf] > 0, we conclude that

inf] ) inf]

Sup Frpyq = max(sup(Fpyq —J), sup(Fpyq NJ)) < max (inf]; M1 = qmHL
By induction,

i
sup E, SF<OO
foralln € N.

For the remainder of the proof, we assume g has polynomial growth. We now prove (1).
If F, = @, then F,, = @ for all n € N, which implies T is ©(1) on E, for all such n.
Therefore, we may assume F, # @. For all n, the set F,, contains Fy, so F,, # Q.

Observe that Fy = D — I, so T is ©(1) on F, by definition of a semi-divide-and-conquer
recurrence and its solutions. Let m be any natural number (including zero) for which T is
©(1) on E,,. We conclude from F,, # @ that infT (F,,) and sup T (F,,) are positive real
numbers. If Fp,., = F,, then T is ©(1) on F,,. Now suppose F,,, ;1 # E,. The set Fp, 44
contains F,,, which contains F, i.e., D — I. Therefore, F,,,; — F,, is a non-empty subset
of I, the domain of g, so

inf(F,, 41 — F,) = infl > 0.

We conclude from sup F, ., < oo that sup(Fp,+1; — F,) < . Lemma 2.2(1) implies g
1s non-negative, so

infg(Fm+1 - Fm) = 0.

Corollary 2.23 implies sup g(F,,+1 — F,,) < ©. We have b;x + h;(x) € E,, for all
X €F,,1—FEyandalli €{1,...,k}, so

A-infT(E,) <T(x) <A-supT(F,) + sup g(Fp+1 — En)

for all such x where

k
A=Zai.

i=1
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Now
inf T (F,,4+1) = min(infT(E,,) ,inf T (F,+1 — E,)) = min(1, A) = infT(E,,) > 0

and
sup T(Fpny1) = max(sup T (Fy) , sup T (Fypyq — Fp))

< max(l, A) * sup T(Fm) + sup g(Fm+1 - Fm) < ®,
so T is O(1) on F,,, ;. By induction, we obtain (1).

We now prove (2): Corollary 9.4 implies R has a unique solution T. Let S be any
bounded subset of the domain D of R. Satisfaction of the bounded depth condition
implies containment of S in F,, for some n € N, which combines with (1) to imply

infT(S) = infT(F,) >0
and
supT(S) < supT(E,) < o,

i.e, T|s = 0(1). Therefore, T is locally ©(1). O
Noise constraint can be loosened. The condition

. hi(x)
lim —= =

X—00 X

0

of propositions 9.8, 9.9, and 9.10 can be replaced by the combination of L > 0and U < 1

where
h:
L = min <lim inf (bi + l(x)>>
1<i<k X—00 X

. hi(x)
U = max ( lim sup | b; + .
1<i<k X—00 X

The conclusion of Lemma 9.8 is satisfied by all @ € (0,L) and 8 € (U, 1). However, we
have no need for this refinement.

and

137



10. Akra-Bazzi Integrals

All of the propositions in [Le] involve Akra-Bazzi integrals of the form

jxucg(u )du

where a > 0 and c are real numbers, and g plays a role similar to the incremental cost of
a semi-divide-and-conquer recurrence. (¢ = —p — 1 where p is the Akra-Bazzi
exponent.) However, there is no explicit integrability requirement for g in [Le]. Our
replacements for Leighton’s propositions include explicit integrability conditions.
Although [Le] mentions the derivative of g, the function g need not be differentiable or
even continuous.

Definition. A tame function is a polynomial-growth, locally Riemann integrable, real-
valued function on a non-empty, positive interval.
The following three propositions list some obvious consequences of the definition:
Lemma 10.1.

(1) Tame functions are either positive or identically zero.

(2) The restriction of a tame function to a non-empty subinterval of its domain is also
tame.

Proof. Lemma 2.7 implies (1). Local Riemann integrability is obviously inherited by
restrictions to non-empty subintervals. The proposition follows from Lemma 2.2(2). O

Lemma 10.2. Let I be a non-empty, positive interval. Sums and products of tame
functions on I are tame. Non-negative, constant functions on I are tame as are non-
negative scalar multiples of tame functions. Reciprocals of positive tame functions are
tame as are quotients of tame functions on I with positive denominators.
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10. Akra-Bazzi Integrals

Proof. The specified functions are locally Riemann integrable (standard facts easily
proved, e.g., by Lebesgue’s criterion for Riemann integrability). Polynomial growth
follows from Lemma 2.3 and Corollaries 2.15, 4.3, and 4.4.

Akra-Bazzi integrands are the specific case of interest:

Corollary 10.3. If g:1 — R is a tame function on a non-empty, positive interval I, and ¢

is a real number, then the function f:I — R defined by f(x) = x°g(x) is also tame.

Proof. The function h: I - R defined by h(x) = x€ has polynomial growth by Lemma
4.1(2) and is locally Riemann integrable, so h is tame. Lemma 10.2 implies f is tame.

Sets of Measure Zero. A set S of real numbers is defined to have measure zero if for
each € > 0, there exists a countable set C of open intervals such that

s<|Ja

A€EC
1.e., C is a cover of S, and

Z length(A) < e.

A€EC

An equivalent definition of measure zero is obtained by replacing open intervals with
non-empty, bounded open intervals.

The definition above of measure zero is equivalent to the definition of a Lebesgue
measurable real set with Lebesgue measure zero as defined in [Ta] and elsewhere.
However, we do not require any knowledge of Lebesgue measure.

The empty set and real singletons have measure zero. Countable unions of sets of
measure zero also have measure zero. In particular, countable real sets have measure
zero. Subsets of sets of measure zero also have measure zero.

We claim that no non-degenerate compact interval I has measure zero: Let S be any
countable cover of I whose elements are non-empty, bounded open intervals. An
inductive argument (See Lemma 5.1.1 of [Ed]) shows that

length(l) < Z length(X).
Xes

Every non-degenerate interval contains a non-degenerate compact subinterval, which
does not have measure zero. Therefore, non-degenerate intervals do not have measure
zero, 1.e., an interval has measure zero if and only if it is degenerate.
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Lebesgue’s criterion for Riemann Integrability: A real-valued function f on a non-
empty, compact interval is Riemann integrable if and only if f is bounded and the set of
discontinuities of f have measure zero ([Ap], Definition 7.43 and Theorem 7.48). The
reference contains a slightly different version of the criterion, which is equivalent to the
formulation here because (1) all Riemann integrable functions on compact intervals are
bounded, and (2) our convention of Riemann integrability for all real-valued functions on
real singletons is compatible with inclusion of such functions in Lebesgue’s criterion
([Ap] does not define Riemann integrability for functions on such domains): Every such
function is bounded and continuous; continuity implies the set of discontinuities is the
empty set, which has measure zero.

We use Lebesgue’s criterion in several places. (Do not be misled by our mention of
Lebesgue. No knowledge of Lebesgue integration is required to understand this
document.) Of course, Riemann or Darboux sums can be used to provide simple
alternative proofs wherever we apply Lebesgue’s criterion.

We remind ourselves of an elementary fact:

Lemma 10.4. If f is a positive, Riemann integrable function on [a, b] where a and b are
real numbers with a < b, then

b
j f(x)dx > 0.

Proof. Let S be the set of discontinuities of f, so S has measure zero by Lebesgue’s
criterion for Riemann integrability. Then S is a proper subset of [a, b] because a < b.
Therefore, f is continuous at some t € [a, b]. Since a < b, there exists a closed interval
[y, z] € [a, b] of positive length such that t € [y, z] and f(x) > f(t)/2 for all x € [y, z].
Since f is non-negative, we know that

y b
f f(x)dx = 0 and j f(x)dx = 0.

Therefore,

b Z _
jf(x)deJf(x)dx>M>0.
a y 2

Our replacements for the propositions of [Le] involve integrals that may be improper.
We now examine convergence of improper integrals with tame integrands.

Lemma 10.5. Let I be a non-empty, positive interval with x, € I and x, > 0 where
xo = infl. Define I* =1 U {xy}. Suppose f:I — R istame and f*:I* — R is an
extension of f, i.e., f*|; = f. Then f* is locally Riemann integrable, and the improper
integral
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jxf(u)du = tl_i)rgg+ jxf(u)du

0
converges to the real value

| Fwdu

Xo

forall x € I. If f is a positive function, then f* is tame if and only f* is positive, i.e.,
f*(xy) > 0. If f is not positive, i.e., f is identically zero, then f* is tame if and only f*
is identically zero, i.e., f*(x,) = 0. (In particular, there exists a tame extension of f to I*
regardless of whether f is positive). If f is positive, the improper integral is positive.

Proof. We claim f* is bounded on each bounded subset B of I*: Corollary 2.23 and
Xo > 0 imply f is bounded on B N I. The function f* agrees with f on B N [ and is
therefore also bounded on B N I. Of course, f* is bounded on the set B N {x,}, which
has at most one element. Therefore, f* is bounded on B = (BN 1) U (B N {x,}) as
claimed.

The function f* is Riemann integrable on every non-empty compact subinterval of |
because f is locally Riemann integrable and f* agrees with f on I. The function f* is
also Riemann integrable on [x,, x,], i.€., {x,}, according to our convention that every real
valued function on a real singleton is Riemann integrable.

We will show that f* is Riemann integrable on every non-empty compact subinterval K
of I*. We may assume K & [ and K # {x,}, so K = [x,, c] for some c € I.

Lete > 0and b € (xq,¢) N (xg,xo + €/4). Then @ # [b, c] € I, which implies f* is
Riemann integrable on [b, c]. Let Y be the set of points in [b, c¢] at which the restriction
of f* to [b, c] is discontinuous. Lebesgue’s criterion for Riemann integrability implies Y
has measure zero. Let Z be the set of points in K at which the restriction of f* to K is
discontinuous. Then Z N (b, c] € Y, which implies Z N (b, c] has measure zero. There
exists a countable set R of open intervals such that the set

R*=UA

A€ER
contains Z N (b, c], and
€
Z length(A) < o
A€ER
Define the open interval
H = (x -~ Xo + E)
- 0 4' 0 4 )

so [xg, b] € H and length(H) = €/2. Define S = R U {H}, so S is a countable set of

open intervals. Let
5= Ja

AE€S
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1e., S =R*UH. Then

Z=(Zn][xye,b)U(Zn(bc]) ESHUR"=S".
Furthermore,

Z length(A) = length(H) + Z length(A) < % + < <ce.

2
A€ES A€ER

Therefore, Z has measure zero. Boundedness of f* on K and Lebesgue’s criterion for
Riemann integrability imply f* is Riemann integrable on K. We conclude that f* is
locally Riemann integrable.

We now verify the claimed convergence of the improper integral. Let x € I, so x > x.
Define

M= sup |f*(r),

T€[x0,x]
soM < oo, Forall § > 0, we have
X X t
j f*(u)du—j fwdu| = j ffwdul < M-(t—xy) <8
Xg t Xq
when
] o)
Xo < t < min (x,xo + M)'
Therefore,
X X
lim | f(wdu = j f*(w)du € R.
t-xg J¢ X

Since f* is locally Riemann integrable, f* is tame if and only if f* has polynomial
growth. Lemma 10.1(1) implies either f is a positive function or f is identically zero.

If f is positive, then Lemma 2.7, Corollary 2.26, and non-emptiness of I imply f* is tame
if and only if f*(x,) > 0. If f is identically zero, then Lemmas 2.3 and 2.7 combine

with non-emptiness of I to imply f* is tame if and only f*(x,) = 0.

We now exhibit a tame function g: I* — R with g|; = f. Let g(x,) = 1if f is positive;
otherwise let g(x,) = 0. If f is positive, then g is positive and Lemma 10.4 implies

X
j gw)du > 0,
Xo
1e.,
X
j f(w)du > 0.
Xo

Divergent integral with inf I = 0. The function u = 1/u on (0, ) is tame, and
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X

lim —du = 0
t-ot e U

for all x > 0.

Under appropriate conditions, the Akra-Bazzi formula is locally ©(1):

Lemma 10.6. Suppose g is a tame function on a non-empty, positive interval I, and
c € I U ({infI} — {0}). Let p be areal number. The function A:I N [c, ) — R defined

by
A(x) = xP (1 + j zglﬁ du)

is locally ©®(1). The integral converges if it is improper, i.e., if ¢ € I.

Proof. Corollary 10.3 implies the function f:I — R defined by f(u) = g(u)/uP*!is
tame. Observe that ¢ > 0. Lemma 10.5 implies the integral converges if it is improper,
i.e.c =infl ¢ I.
Let S be a bounded subset of I N [¢, ). We claim A is ©(1) on S. By our definition, the
empty function is ®(1). Therefore, we may assume S # ¢. Let M = sup S, so
c<M<wandS S InJc M]. Define

W =sup f( n[c,M]).

Corollary 2.23 implies W < co. Lemma 10.1(1) implies f is non-negative, so W > 0 and
X
OSJ f(du<x—-—c)W <M —c)W <MW
c

for all x € S. The function x? is monotonic on (0, ), so

0 < min(c?, MP) < A(x) < (max(c?,MP)) - (1 + MW) < o
for all x € S. In particular, A|g = ©(1). Therefore, A is locally ©(1). 0
We turn our attention to the lower limit of integration and its effect on the Akra-Bazzi
formula.
Lemma 10.7. Suppose f is a positive, tame function on a non-empty, positive interval I.

Define ] = I U ({infI} — {0}). If s,t € ] and y € R such that y > max{s, t}, then there
exist positive real numbers 4; and 4, such that
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Aljxf(u)duijf(u)duslzjxf(u)du

forall x € I N [y, ).

Proof. Leta € ]. Ifa € I, then a = infl > 0, and Lemma 10.5 implies the improper
integral

jazf(u) du

converges for all z € I. In particular, any improper integral that appears in the statement
of the current proposition is convergent (i.e., if {s, t} & I).

The inequality y > s implies y > infl. If y € I, then y > sup[ and

Infy,o)=Un{yHu(In(y,»)<cIn(supl, o) =49,

so the lemma is vacuously satisfied with A; = 4, = 1. Therefore, we may assume y € I.
We may also assume s # t; otherwise the lemma is again satisfied with 4, = 1, = 1.

If f is not a positive function, then Lemma 10.1(1) implies f is identically zero, so

fo(u) du = jtxf(u) du=20

for all x € I N [y, ©) and the lemma is satisfied by A; = A, = 1. Therefore, we may
assume f is positive. Lemmas 10.4 and 10.5 imply

B
j fw)du>0

for all @, f € ] that satisfy a < f5.

Let ¢ = min(s, t) and d = max(s,t),soc,d,y € Jand 0 < ¢ < d < y. Define

d y
Azjc f(u)du and B=Lf(u)du,

soA>0andB >0. Letk=B/(A+B),sok >0. Letx € I N [y, ), so
X
j f(w)du = 0.
y

(The integral above is zero if and only if x = y.) Observe that
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j?@ﬁw=3+j?wﬁw23
d y
Therefore,
.fﬂwdu=A+ﬁfwﬁm
Lf@du [ f@du

<Al
— B - k .

The denominators above are positive. Now

kjcxf(u)dusfo(u)du<A+j:f(u)du=jcxf(u)du.

If s < t, then ¢ = s and d = t; the proposition is satisfied with .; = kand 4, = 1. If
s > t,then ¢ =t and d = s; the proposition is satisfied with ., = 1 and A, = 1/k. O

Dangerous Bend. The condition x € I N [y, ©) of Lemma 10.7 cannot be weakened to

x € I N (d,») when f is positive, s # t, and d = max(s,t) # supl. Let ¢ = min(s, t),
soc < d and

d
f f(uw)du > 0.

Observe that
X
xlirglJrL f(uw)du = 0.

For all k > 0 there exists x € I N (d, ©) such that

xf(u) du<k df(u) du <k xf(u) du.
| | |

If s < t, then ¢ = s and d = t; there is no A; > 0 that satisfies

A jxf(u) du < jxf(u) du

forallx € I N (d,). If s > t, thend = s and ¢ = t; there is no A1, > 0 that satisfies
X X
j fw)du < A, j f(u)du
t N
for all such x.

Lemma 10.8. Suppose g is a tame function on a non-empty, positive interval I. Define
J=1U {infI} —{0}). Lets,t € J, and let p be a real number. Define the functions

A:1N[s,©) > R
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10. Akra-Bazzi Integrals

and
B:In[t,©) » R*
by
X
g(u)
A(x) = xP (1 + js il du)
and

B(x) = xP (1 + j"iﬁzﬁ du).

There exist positive real numbers 4, and A, such that

AlA(x) < B(x) < /12A(X)
for all x € I N [m, ) where m = max(s,t). If s € [ or t & I, the improper integral in
the definition of A(x) or B(x), respectively, is convergent for all x in the corresponding

domain.

Proof. Corollary 10.3 implies the function f:I — R defined by f(u) = g(u)/uP*tis
tame. If @ € ] — I, then @ = infI > 0, and Lemma 10.5 implies the improper integral

ja fu) du

converges for all z € I. In particular, any improper integral that appears in the statement
of the current proposition is convergent (i.e., if {s, t} € I). The function f is non-
negative by Lemma 10.1(1), so

b
j fwdu=0

whenever a € | and b € [ such that a < b. Therefore, A and B are positive, real-valued
functions as claimed.

If f is not positive, then Lemma 10.1(1) implies f is identically zero, so
A(x) = B(x) = xP

for all x € I N [m, ), and the proposition is satisfied with ; = 1, = 1. We now
assume f is a positive function.

Let ¢ = min{s,t} and y = m + 1. Lemma 10.7 implies there exist positive real numbers
k, and k, such that

X X X
kl_[ fu) du S] fw)du < kzj f(u)du
S t N
forall x € I N [y, ). Let¢; = min(1, k,) and ¢, = max(1, k), so ¢;,¢c, € Rt and
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10. Akra-Bazzi Integrals

c1A(x) < B(x) < ¢, A(x)

for all such x. Lemma 10.6 implies there exist positive real numbers a4, a,, B, and S,
such that a; < A(x) < a, and B; < B(x) < B, forall x € I n [m,y). For all such x, we
have

B

—A(x) <B(x) < &A(x).
a; a

The proposition holds with A, = min{c,, 8;/a,} and A, = max{c,, B,/a,} because

IN[m, o) = (I N [m,y)) U (I N[y, 00)).

In Section 20, we show under mild assumptions that validity of a strong form of the
modified Akra-Bazzi formula is essentially independent of the lower limit of integration.
The following proposition plays a critical role in the proof.

Lemma 10.9. Let D be a set of real numbers, and let [ and / be non-empty, upper subsets

of D with s = infl > 0 and t = inf] > 0. Suppose g is a tame function whose domain
contains I U J. Let p be a real number, and let A, B: D — R be real-valued functions on D

satisfying
*g(u
xp<1+j g(+3du>, forx €l
A(x) = s up

0(1), forx € D —1

*g)
B(x) = xp<1+jt uP+1du>' forx €]

0(1), forx € D —]J.

and

If s ¢ domain(g) or t € domain(g), the corresponding improper integral is convergent
for all x € I or all x € ], respectively. There exist positive real numbers A, and 1, such
that

AlA(x) < B(x) < /12A(X)
for all x € D.

Proof. Let H be the domain of g. By definition of a tame function, H is a non-empty,
positive interval. Define K = H U ({infH} — {0}).

We claim s € K: The set H contains I, so s = infH. If s = infH, then inf H > 0, so
infH € K, i.e., s € K as claimed. Suppose instead that s > inf H, so there exists h € H
such that h < s. Non-emptiness of [ implies there exists z € I, so s < z. Containment of
[ in H implies z € H. Connectivity of H and the chain of inequalities h < s < z imply

s € H. We conclude from H € K that s € K. Similarly, t € K.
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10. Akra-Bazzi Integrals

Corollary 10.3 implies the function u = g(u)/uP*?! on H is tame. Let ¢ = min(s, t), so
c€Kandc>0. If{s,t} £ H, thenc = infH ¢ H, and Lemma 10.5 implies the

improper integral
X
u
J gw) du
Cc

up+1

converges for all x € H.

Define functions A*: H N [s,0) - R and B*: H N [t,©) — R by

A*(x) = xP (1 + szﬁlﬁ du)

B*(x) = xP (1 + j";gﬂ()zg du).

Observe that A|; = A*[; and B|; = B"|,.

and

Lemma 10.8 implies there exist positive real numbers a; and a, such that
a,A*(x) < B*(x) < a,A*(x)
for all x € H N [m, o) where m = max(s, t). Observe that
Dn(mw)cinjc(Hn[s,0))n(HNItw))=HN][mw),
SO

a,A(x) < B(x) < a,A(x)

for all x € D N (m, ). Observe that I N (s,m] = D N (s,m]. Lemma 10.6 implies A*
is®(1) onlInN[s,m],ie., Ais ©(1) on

In[s,m]=Un{s}) uDn(s,m].
By hypothesis, A is ©(1) on
D—-1=(Dn(-=,5))U((D-Dn{s}),
so Ais (1) on
(D—-hHu{n][s,m]) =Dn(—o,m].

Similarly, B is ©(1) on D N (—oo,m]. There exist positive real numbers y4, y,, 8;, and
&, such that

¥1 S Ax) < Y2,

61 < B(X) < 62,
and
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10. Akra-Bazzi Integrals

ﬁA(x) <B(x) < QA(x)
Y2, V1

forall x € D N (—oo,m]. Let

. 51 52
A1 = min| a;,— ] and 4, = max (az,—),
Y2, V1

SO Al,lz € R+ and
AlA(x) S B(x) S /12A(X)
forallx € D.

149



11. Replacement for Leighton’s Theorem 1

We offer an extremely modest revision of Theorem 1 of [Le] that incorporates the
modifications discussed in Section 7, includes an explicit integrability requirement, and
has a change in the lower limit of integration to accommodate the new domain of the
function g.

Leighton’s Theorem 1 (revised). Suppose ay, ..., a; € R* and b4, ..., b, € (0,1) for
some k € Z*. Letx, € R such thatx, = 1/b; foralli € {1, ..., k}. If f:[1,x,] » R*
is @(1), and g is a tame function on (x,, ), then there exists exactly one function
T:[1,00) — R such that T|; ;) = f and

k

TG = ) aT () +g(@)
i=1
for all x > x,. Furthermore,

T(x) =01 xP (1 + jxigﬁ du)

Xo

where p is the unique real number for which

aibg9 =1.

N~

i=1
Of course,
(D, ], aq, ...,ak, bl’ ...,bk,f,g, h’ll ""h’k)

is a divide-and-conquer recurrence where D = [1,), I = (x,, ), and the functions
hy, ..., hi: 1 = R are identically zero. The recurrence satisfies the ratio condition with

B = max b;
isisk
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11. Replacement for Leighton’s Theorem 1

and has a unique solution, T, by Lemma 9.6. The existence and uniqueness of p will be
established later as the entirely straightforward Lemma 11.1. The Akra-Bazzi integrand,
g(u)/uP*! is a tame function on I by Corollary 10.3. The modified Akra-Bazzi integral
in our revision of Leighton’s Theorem 1 is improper:

j"g(u) du = lim jxg(u) du

+1 + +1 4
X0 ub t-xg J¢ ub

which converges for all x > x, by Lemma 10.5. The Akra-Bazzi integral is undefined
for x < x, because the domain of g is (x,, ).

Some very minor complications, such as an improper Akra-Bazzi integral, could be
avoided by specifying [x,, o) as the domain of g in our replacement for Leighton’s
Theorem 1. By Lemma 10.5, g has a tame extension g*: [x,, @) — R. Corollary 10.3
implies the function g*(u) /uP*?! on [x,, ) is tame for all such g*. Lemma 10.5 implies

X X %
: gw) (g (w)
], e = | o
X0

for all x € (x,, ) and all such g*. Furthermore, Lemma 10.1(2) implies the restriction
of any tame function from [x,, ©) to (x,, ) is also tame. Thus the choice between
(xg, ) and [x,, ) as the domain of g is only a matter of taste and convenience.

Our revision of Theorem 1 relies on a corresponding revision of Lemma 1 of [Le]:

Leighton’s Lemma 1 (revised). Suppose g is a tame function on a non-empty positive
interval I. If p € R and by, ..., by, € (0,1) for some k € Z*, then there exist 1;,1, € R*
such that

X
g)
A1g(x) < xP j i du < A,9(x)

bix

foralli € {1,...,k} and all x € I for which b, x, ..., b;x € I.

Of course, the revised Lemma 1 is vacuous if the interval I is too small. The proposition
can be proved in the same fashion as the original Lemma 1 of [Le]. The lemma is
applied with I = (x,, ) in the proof of the new Theorem 1. In effect, the condition

x = 1 of Leighton’s Lemma 1 is changed to b;x > x, forall i € {1, ..., k}. We also
substitute our definition of polynomial growth and include an integrability condition.

When infl > 0 (as in the application to Theorem 1), Lemma 10.5 can be used to replace
the condition b, x, ..., bix € I in the revised Lemma 1 with b, x, ..., b,x € I U {infI}, i.e.,
b;x > infI can be replaced with b;x > infl. The resulting integral is improper for some
choice of b; and x. We shall not need this further refinement of Lemma 1.
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11. Replacement for Leighton’s Theorem 1

The proof of Theorem 1 in [Le] uses a partition of [1, ) into an infinite sequence of
intervals, and proceeds by induction on the interval index. We use a partition of (x,, o)
instead. Let

b = 1r£1ii<1}c(min(bi, 1—b;)).

In particular, 0 < b < 1. Define x; = xo/b, Iy = (xo,x1], and [; = (x; +j — 1,x; + j]
for each positive integer j. The intervals I, I, ... are disjoint, and their union is (xg, ©).

Lemmas 9.6 and 10.6 imply T'(x) and

xP (1 + _[xiz()lg du)

0

are O(1) on I, as required by the base case of the induction.
We argue as in [Le]. Suppose x € I; for some positive integer j, so

bix >b;(x;+j—1) = bjx; = bx; = x,
and

bix <bj(x;+j)<bx;+j=x1+j—A=b)x; <x;+j—bx; =x1+j—x,
< x1+j—1

foralli € {1, ..., k}. Therefore,

j—1
bix € (xg,x1 +j—1]) = Uln,
n=0

which implies b;x € I,, for some 0 < n < j as required by the inductive step of the proof
of Theorem 1. Since b;x > x,, the revised Lemma 1 is applicable with I = (x,, ) to

the integral
X
g
jb e du,

which appears in the inductive step in the proof of Theorem 1. The proofin [Le] also

uses the integrals
*g(u ) and b (u)
p+1 p+1 U,

which should be changed to
g [T
p+1 p+1
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11. Replacement for Leighton’s Theorem 1

respectively. The reader can verify that the proof of the revised Theorem 1 goes through
nearly unchanged from [Le].

The hypothesis of Leighton’s Theorem 1 includes the condition x, = 1/(1 — b;) for

1 < i < k, which is no longer required. It is used in [Le] only to show that the original
partition is suitable for the inductive step of the proof. Our proof for the revised partition
does not require that condition.

Lemma 11.1. If k is a positive integer, a4, ..., a; are positive real numbers, and by, ..., by
are real numbers such that 0 < b; < 1 for each i, then there exists a unique real number p
that satisfies

Proof. Define f: R — R by

f(x) =2aibix—1.

=1
The function f has a root p because f is continuous,
lim f(x) =4+ >0,
X—>—00
and
lim f(x) =-1<0.
X—+00
The function f is decreasing and hence injective because it has the negative derivative

k

f'G) = aiblogh,

=1

Therefore, p is the unique root of f. O
The statement of Lemma 11.1 becomes false if we omit the requirement that 0 < b; < 1
for each i. For example, letk = 2,a; = a, =1, b; = 2, and b, = 1/2. Observe that
2P > 1ifp >0and (1/2)P = 1 if p < 0. Furthermore, 2P and (1/2)? are positive for
all real p. Therefore,

a;b? + a,b? =27 + (1/2)? > 1
for every real number p. (Of course, the minimum of 27 + (1/2)P is 2° + (1/2)° = 2.)

Lemma 11.1 justifies the following definition:
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11. Replacement for Leighton’s Theorem 1

Definition. The Akra-Bazzi exponent of a semi-divide-and-conquer recurrence

(D,], a, ..., Ag, bl’ ...,bk,f,g, h’ll ""h’k)

is the unique real number p for which

k

Zalblp=1

i=1
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12. A Partition of the Real Numbers Into Very Dense Subsets

The main result of this section is Lemma 12.2, which will help us in our construction of
an extreme counterexample to Theorem 2 of [Le]. We make use of complementary
subspaces of vector spaces. If A is a vector space and B is a subspace of A, then Zorn’s
Lemma' implies the existence of a subspace C of A such that

A=B®C.

Recall that A/B is the quotient space consisting of cosets B + a with a € A. Since A/B
is isomorphic to C, we have |A/B| = |C| where |S| denotes the cardinality of a set S.

Suppose the scalar field is infinite, B is one-dimensional, and A # B. The subspace C is
non-zero, so it contains a one-dimensional subspace isomorphic to B. Thus |C| > |B]|.
As B @ C is equipotent with the Cartesian product of the infinite sets B and C, we have

|B @ C| = max(|B|,[C]) = |CI.
Therefore,
|Al =|C| = |A/B|.

We follow the convention that Q represents the field of rational numbers. R is viewed as
a vector space over Q.

Lemma 12.1. If X is a non-empty open subset of R, and V is a subspace of the rational
vector space R with |[V| = |R|, then |V N X| = |R|.

Proof. V # 0 implies V contains a non-zero element w, which spans a one-dimensional
subspace W of V. Since W is countable, we have W # V. Then

[V/W| = IR|.

Let v be an element of V, and define the homeomorphism 4: R — R by

I A can be infinite dimensional.
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12. A Partition of the Real Numbers Into Very Dense Subsets

A(t)zt—v

for each real number t. Then A(X) is a non-empty open set containing a rational number
z, and
zw+v eV nNX.

In other words, each coset of W in V contains an element of V N X. Since the cosets are
disjoint, the axiom of choice implies the existence of an injection from V /W into V N X.
Therefore,
Rl =[V/W|<IVnX[<|V|]=|R|,
which implies
[V NnX|=|R|

Lemma 12.2. There exists a countably infinite partition P of R such that
lp N X| = |R]|
for each p € P and each non-empty open subset X of R.

Proof. The vector space R over Q has Q as a one-dimensional subspace. There exists a
subspace V of R such that
R=QV.
Furthermore,
VI = IRI.

Define P = R/V, which is a countably infinite partition of R into cosets of V. If p € P,
then p =V + g for some q € Q. For each non-empty open subset X of R, define the
non-empty open set
X;={x—q xe€X}
Lemma 12.1 implies
[VnXx,| =IRl

There is a bijection from V' N X, onto (V + g) N X witht » t +qfort €V N X,.
Therefore,
| |V +q) n x| = IR],
ie.,
lp N X| = |R].
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13. Infinitely Recursive Counterexamples
to Leighton’s Theorem 2

In this section, we assume x, € [686,10000] and f:[1,x,] — R such that f(x) = 0(1).
Each such choice of x,, and f determines a recurrence

T(x) = fx), forl<x<x,
() = {aT(bx +h(x)) + g(x), for x > x,

where a = b = 99/100 and the functions g, h: (0,0) — R are defined by g(x) = 1 and

h()—{ 0, forl1 <x <x,
= Wx, for x > x,.

The recurrence (actually a family of recurrences determined by the choice of x; and f)
described above is the main subject of this section and is the object of any reference in
this section to a recurrence. In Section 14, we show that the recurrence satisfies the
hypothesis of Leighton’s Theorem 2 with € = 0.74 and p = —1. Meanwhile, satisfaction
of the hypothesis is assumed. We will demonstrate that the recurrence is an extreme
counterexample to Leighton’s Theorem 2.

According to Theorem 2 of [Le],

T(x) =0 (x‘l (1 + jx#du>> =0 (% (1 + jxdu>> = 0(1).

One exact solution of the recurrence is given by T'|[1,; = f and T'(x) = 100 for all
X > Xo. (Corollary 13.2 will imply bx + h(x) > x, for all x > x,.) This solution
satisfies T(x) = ©(1) in agreement with the formula. However, we will prove the
existence of an uncountable family of other solutions that are far different from ©(1).

Condition 3 of Leighton’s Theorem 2 arguably contains a slight ambiguity. Compliance

of the recurrence above with that condition is perhaps open to interpretation when
X9 # 10000. When x, = 10000, the aforementioned ambiguity is avoided and the
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recurrence inarguably satisfies the condition in question. We shall explain the issue after
a brief digression.

For the remainder of this section, we define

B:(0,0) - (0, )
by
B(x) = bx + Vx.

Of course, a function T: [1,0) — R is a solution of the recurrence determined by x, and
f ifand only if T|[1,,,) = f and

T(x) = aT(B(x)) + g(x)
for all x € (x,, ). The function B is more convenient for some purposes than the
closely related function x — bx + h(x) on [1, ), which agrees with B on (x,, ).
We list a few basic facts about the two functions:

Lemma 13.1.

(1) B(10000) = 10000.

(2) If x € (0,10000), then x < B(x) < 10000.
(3) If y € (10000, ), then 10000 < B(y) < y.
(4 0< bz+h(z) <zforall z € [1,x,].

Proof. By definition,

99
B(10000) = 100 10000 + v10000 = 9900 + 100 = 10000.

The function B is strictly increasing, so
B(x) < B(10000) = 10000.

Furthermore, vx < v/10000 = 100, so x/100 < +/x, which implies

_ 99x 4 X
100 100

99x
= B(x).
X < 100+\/§ (x)

Similarly, ﬁ > +/10000 = 100, so y/100 > \/)_/, which implies

9y vy 99y
Y= 7100 * 100 > 100 VY 2

Since B is strictly increasing and y > 10000, we conclude that B(y) > B(10000), i.e.,
B(y) > 10000.
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By definition, h(z) = 0, so

99
bz + h(z) = bz = 1002 € (0,2).

Potential ambiguity about Satisfaction of Leighton’s Condition 3. Condition 3 of
Leighton’s Theorem 2 requires the existence of positive real numbers c¢; and ¢, such that

c19(x) < g(u) < c,g(x)

forall x > 1 and all u € [bx + h(x), x]. The function g is constant, so

- glr)=gw) <1-gx)
for all x,u € (0, ).

Some authors (such as the author of this document) define [c,d] = {x € R: ¢ < x < d}
forall c,d € R, so [c,d] = @ when ¢ > d. Others do not define [c, d] when ¢ > d.
When x, = 10000, Lemma 13.1 and agreement of B with the function t ~ bt + h(t) on
(%9, ) imply bx + h(x) < x for all x = 1, so Leighton’s condition 3 is unambiguously
satisfied. However, when x, < 10000, there exists w € (x,, 10000). Lemma 13.1 and
w > x, imply bw + h(w) = B(w) > w. We interpret [bw + h(w), w] as the empty set,
so condition 3 is vacuously satisfied when x = w. However, some readers may regard
[bw + h(w), w] as undefined and consider the mere appearance of that closed interval in
condition 3 to indicate an implicit requirement that bx + h(x) < x for all x = 1. Such
readers would presumably regard our recurrence as satisfying the hypothesis of
Leighton’s Theorem 2 only when x, = 10000. Leighton’s intention is unspecified.

Semi-divide-and-conquer recurrence is proper if and only if x, = 10000. Observe
that
R=(D,l,ab,f,gh)

is a semi-divide-and-conquer recurrence where D = [1,00) and I = (x,, ). Lemma
13.1 implies B(I) € D, i.e., condition (9) of the definition of a semi-divide-and-conquer
recurrence is satisfied. The remaining conditions are obvious. We also conclude from
Lemma 13.1 that R is proper, i.e., B(x) < x for all x € I, if and only if x, = 10000.

T(10000). When x, # 10000, B-invariance of 10000 (Lemma 13.1) implies

99
T(10000) = MT(lOOOO) +1

for every solution T, i.e.,
T(10000) = 100.
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The function B: R* — R™ has powers B™: Rt —» R* defined by composition of functions
for all non-negative integers n. (B? is the identity map on R*.) Existence of negative
powers of B will follow from lemma 13.3.

Corollary 13.2. The interval (x,, ) is B"—invariant for each non-negative integer n.
Proof. LetS = (xg,0), and suppose x € S. If x # 10000, then Lemma 13.1 implies
B(x) > min(x,10000) > x,,

so B(x) € S. Ifinstead x = 10000 € S, then Lemma 13.1 implies B(x) = x, so again
B(x) € S. Therefore, B(S) € S. The function B is the identity map on (0, ), which
contains S, so S is B%-invariant. If n is a non-negative integer such that the interval S is
B™-invariant, then

B"*1(S) = B(B™(S)) € B(S) < S.

The proposition follows by induction. O

B—invariance of (x,, o) implies the recurrence has infinite depth of recursion at all

X € (xg,). We provide a C# implementation of the recurrence below. The method T
of the Counterexample class throws a StackOverflowException for x > x,.
(We ignore the issue of floating-point rounding.)

namespace LeightonTheorem?2

{
public delegate double BaseCase(double Xx);

public class Counterexample

{

readonly BaseCase f;
readonly double x0;

// valid only if 686 <= x0 <= 10000
// and f is Big Theta of 1 on [1,x0]:

public Counterexample(BaseCase f, double x0)

{
if (x0 < 686 || x0 > 10000)
{
throw new ArgumentOutOfRangeException();
}
this.f = £;
this.x0 = x0;
}
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public double T(double x)

{
if (x < 1)
{
throw new ArgumentOutOfRangeException();
}
if (x <= x0)
{
return f(x);
}
return 0.99 * T(0.99 * x + Math.Sqrt(x)) + 1;
}

Lemma 13.3. The function B is a homeomorphism from (0, o) onto itself.

Proof. The function B is continuous. Furthermore, B is strictly increasing and therefore
injective. Define the function C: (0, o) — (0, ) by

-1+V1+ 4bx>2
2b '

C(x) =<

Then B(C (x)) = x for each positive real number x, so B is surjective (hence bijective)
and B! = C. Continuity of B~! implies B is a homeomorphism. O

Alternate proof of Lemma 13.3. The general principle (which we shall not prove) is
that all continuous bijections between real intervals are homeomorphisms. As before, B
is injective because B is strictly increasing. The function B is continuous and satisfies

limB(x) =0
x—0

and
lim B(x) = oo.

X—00

The intermediate value theorem implies B: (0, 0) — (0, o) is a surjection and therefore a
bijection. We conclude that B is a homeomorphism. O

Among other things, Lemma 13.3 guarantees the existence of the homeomorphism B"
from (0, o) onto itself for each integer n. As usual, powers of B refer to composition of
functions, not exponentiation of function values. For example, B? and B2 satisfy

B%(B72(x)) = B°(x) = x
forall x > 0.
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Lemma 13.4. If n is an integer, then

(1) B™ is a strictly increasing function.

(2) B™(10000) = 10000.

(3) The intervals (0,10000) and (10000, o) are preserved by B™.
Proof. (1): The assertion holds for n = 0, because B° is the identify map, which is a
strictly increasing function. The function B is obviously an increasing function, so B~ is
also increasing. Suppose k is a positive integer for which B¥ and B~ are increasing.

The composition of increasing functions is also an increasing function, so B¥** = B o B¥
and B~ *1 = B~1 o B¥ are increasing. The result follows by induction on |n]|.

(2): We have B°(10000) = 10000 by definition. Lemma 13.1(1) implies
B(10000) = 10000,
SO

B~1(10000) = 10000.

Suppose k is a non-negative integer for which B¥(10000) = B~%(10000) = 10000.
Then

B¥+1(10000) = B(Bk(loooo)) = B(10000) = 10000
and
B~(*+1(10000) = B—l(B—k(10000)) = B~1(10000) = 10000.

The assertion follows by induction on |n|.
(3): Lemma 13.3 implies B: R* — R* is a bijection, so B™: R* — R™ is also a bijection.
Let V = (0,10000) and W = (10000, ). Parts (1) and (2) imply B™(V) € V and
B™(W) € W. By (2), we have
V ¢ Rt = B*(RY) = B"(V) U {BY(10000)} U B*(W) <€ B™(V) U {10000} U W
C B™(V) U (R*\V),
which implies V € B™(V). We conclude that B*(V) = V. Similarly,
W c R* = B"(R*) = B*(V) u {BN(10000)} U B®*(W) =V U {10000} U B™*(W)
c (R*\W) U B™*(W),

which implies W € B™(W). We conclude that B*(W) = W. O
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Lemma 13.5. If m < n are integers, then B™(x) < B™(x) for all x € (0,10000) and
B™(y) > B™(y) forall y € (10000, ).

Proof. Lemma 13.4 implies B/ (x) € (0,10000) and B’ (y) € (10000, =) for each
integer j. Lemma 13.1 implies

B™(x) < B(B™(x)) = B™*'(x)
and
B™(y) > B(B™(y)) = B™**(y).

Suppose s is positive integer such that B™(x) < B™*5(x) and B™(y) > B™*S(y).
Lemma 13.1 implies

Bm(x) < Bm+5(x) < B(Bm"'s(x)) — Bm+s+1(x)
and
Bm(y) > Bm"'s(y) > B(B"H'S(y)) — Bm+s+1(y)_

By induction, B™(x) < B™*t(x) and B™(y) > B™*t(y) for each positive integer t. In
particular, B™(x) < B™(x) and B™(y) > B™(y) because and n — m is a positive integer
andn =m+ (n —m). O

Lemma 13.6.

(1) If x > 0, then
lim B™(x) = 10000.
n—-oo
(2) If x € (0,10000), then
lim B™(x) = 0.
n—-—oco

(3) If x € (10000, o), then
lim B™(x) = oo.
n——oo

Proof. (1): Lemmas 13.4 and 13.5 imply the sequence
x,B(x), B*(x), ...

is monotonic and contained in the interval / = [min(x, 10000), max(x, 10000)]. The
sequence converges to some ¢ € J. Then ¢ € (0,0) = domain(B). Continuity of B
implies the sequence

B(x),B?(x), B3(x) ...

converges to B(c), i.e., B(c) = c¢. Lemma 13.1 implies 10000 is the unique fixed point
of B,so c = 10000, i.e.,
lim B™(x) = 10000.

n—-oo
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(2) and (3): Letx € (0,0)\{10000}. Lemmas 13.4 and 13.5 imply
x,B71(x),B7%(x), ...
is a monotonic sequence in (0, 0)\{10000}, so the limit
L= lim B™(x)
n—-—oo
is defined. Furthermore, L € [0, o0]. Lemma 13.3 implies B~ is continuous.
IfL € (0,0),i.e., L € domain(B~1), then continuity of B~! implies
B~ (x), B7(x), B3 (x), ...
converges to B~Y(L), i.e., L = B~*(L). Then B(L) = B(B~'(L)) = L, so L = 10000 by
Lemma 13.1. However, Lemma 13.5 implies L # 10000. We conclude that L € {0, oo}.
If x € (0,10000), then Lemma 13.5 implies L # oo, so L = 0. If x € (10000, ), then
Lemma 13.5 implies L # 0, so L = oo. O
Definition. Define the equivalence relation ~ on (x,, ©)\{10000} by x~y if there
exists an integer n such that B™(x) = y. The equivalence class of x is denoted by x™.
For each subset X of (xg, )\{10000}, let
X" ={x":x € X}.
A transversal of ~ is a subset of (x,, 2)\{10000} that contains exactly one
representative of each equivalence class.
We can easily verify that ~ is an equivalence relation: B°(x) = x; if B™(x) = y, then
B~™(y) = x; if also B"(y) = z, then B™*"(x) = z.
We now catalog some obvious properties of equivalence classes:

Lemma 13.7. Let x € (x,, ©)\{10000} and

S={nezZ: B"(x) ex"}.
Then

(H)S={nez: B"(x) > x,}.
(2) x~ is B-invariant.

(3) The map ¢: S — x~ defined by ¢(n) = B™(x) is a bijection.
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(4) x~ is countably infinite.

(5) If x > 10000, then S = Z and x~ < (10000, ).

(6) If x < 10000, then x~ < (x,, 10000) and there exists an integer m < 0 such that
S={nezZ: n=>m}

(7) S contains every non-negative integer.

8)n+1e€Sforalln €S.

Proof. Lemma 13.4(3) implies B™(x) # 10000 for each integer n, so (1) follows from
the definition of ~.

Suppose z € x~. By definition of ~, we know z > x, and z = B¥(x) for some k € Z.
Corollary 13.2 implies B(z) > x,, i.e., B¥*1(x) > x,. Then (1) impliesk + 1 € S, so
B**1(x) € x~, i.e., B(z) € x~. Thus (2) is satisfied.

Lemma 13.5 implies B!(x) # B’ (x) when i # j are integers, i.e., ¢ is injective. The

map ¢ is surjective by definition of ~. Therefore, ¢ is a bijection, i.e., (3) is satisfied.
The set S is countable, and x~ = ¢(S), so x™ is also countable.

Suppose x > 10000. Lemma 13.4(3) implies B™(x) > 10000 foralln € Z, so x™ is

contained in (10000, 0). Countability of x™ and uncountability of (10000, o) imply

the containment is proper. Recall that x, < 10000, so B™(x) > x, foralln € Z.

Statement (1) implies S = Z, so (5) is satisfied.

Now suppose x < 10000, so x, < 10000. Lemma 13.4(3) and the definition of ~ imply
x~ € (0,10000) N (xg, ) = (xg,10000).

Countability of x™ and uncountability of (x,, 10000) imply the containment is proper.
Lemma 13.5 implies

. <B?(x)<B1(x) <x <B(x) <B%(x) < --.

Lemma 13.6(2) implies
lim B"(x) =0<x, <x=B%0),
n—-—oo
so (6) follows from (1).

Statements (5) and (6) imply S is countably infinite, so (3) implies (4). Statements (5)
and (6) imply (7) and (8) O
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Lemma 13.8. If x € (xy, ©)\{10000} and y € R, then there exists exactly one function
A:x~ — R such that A(x) = y and

A(z) = axl(B(z)) +1
forall z € x~.

Proof. (Lemma 13.7(2) implies B(z) € x~ = domain(A) for all z € x~.) Recall that N
denotes the set of non-negative integers. Inductively define u: N - R by u(0) = y and

un+1) =$,

SO
un) =au(n+1)+1
for alln € N. Recursively define w: Z* — R by

w(l) =au(0) +1
and
wn)=awn—-1)+1

foralln > 1. Let Z~ denote the set of negative integers and define v: Z~ — R by
v(n) = w(—n), so
v(=1) = au(0) + 1
and
vin)=aw(-n—-1)+1=av(n+1)+1
foralln < —1. Definer:Z - Zbyr|y =uandr|z- = v. Then r(0) = u(0) = y and
rn)=ar(n+1)+1
foralln € Z. Let
S={nezZ: B"(x) ex"},

and define ¢:S — x~ by @(n) = B™(x). The function ¢ is a bijection by Lemma
13.7(3) and has an inverse ¢ ~*:x~ - S. Define 2:x~ = R by A(z) = r(¢~1(2)), so

Alx) =r(0) =y.
Ifz€x~andn = ¢ 1(z),thenn € S. Lemma 13.7(8) impliesn + 1 € S, so
p(n+1) =B"1(x) = B(B"(x)) = B(2)
and

A)=rn)=ar(n+ 1) +1= aA(B(z)) + 1.

Now suppose u: x~ — R such that u(x) = y and
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u(z) = au(B(z)) +1
forall z € x~. Let

W= {n € Z : eithern & S or A(B"(x)) = ,u(B”(x))}
and
W =fneNNW:—-new}

We know 0 € W because B°(x) = x and

A(x) =y = u().

More specifically, 0 e NN W. Of course, -0 =0 € W,so0 € W*. Letn € W*, so
n € NNW. Lemma 13.7(7) implies N € S, son € S N W, which implies

' A(B™(x)) = u(B™(x)),
ie.,
aA(B™1(x)) + 1 = au(B™*(x)) + 1.
Then
A(B™1(0) = u(B™ (X)),

which impliesn + 1 € W. Of course,n+ 1 € N becausen € N,son+1€eNNW.

Suppose —(n + 1) € S, so —n € S by Lemma 13.7(8). We know —n € W because
n € W*. Now

ABT™ (%) =ar(B™(x) +1=au(B™(x)) +1=u(B*(x)),
so —(n+ 1) € W, which implies n + 1 € W*. Now suppose instead that —(n + 1) & S.
Then —(n + 1) € W by definition and againn + 1 € W*. By induction, N € W*, i.e.,

W*=N. Then W = Z, so
A(BM(x)) = u(B™(x))

for alln € S. Surjectivity of ¢ implies A(z) = u(z) forall z € x~. Thus A = u. O

Lemma 13.9. If S is a transversal of the equivalence relation ~, then each real-valued
function on S has a unique extension to a solution of the recurrence.

Proof. Lett: S —» R. Lemma 13.8 implies that for each x € S, there exists exactly one
function A,: x~ — R with A,.(x) = t(x) such that

Ae(2) = a/lx(B(z)) +1
for all z € x~. (Recall that x~ is B-invariant by Lemma 13.7(2), i.e.,

B(z) € domain(A,) forall z € x~.) Let W = (x,,0)\{10000}. The set W is a disjoint
union of equivalence classes of elements of S:
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veJe-

XES

There exists a unique real-valued function ¢: W — R with ¢|,~ = A, forall x € S. The
function ¢ satisfies @ (x) = 1, (x) = t(x) for all such x, i.e., ¢|s =t. Forallz € W,
there exists x € S such that z € x~. Then B(z) € x™, so z, B(z) € W = domain(y).
Furthermore,

p(z) =.(2) = alx(B(z)) +1= ago(B(z)) + 1.

Define the function T:[1,00) = R by T|[1x,] = f, Tlw = ¢, and if x, # 10000, i.e.,
Xo < 10000, define T(10000) = 100. For all z € W, we have

T(z) =¢(2) = aqo(B(z)) +1= aT(B(z)) + 1.

If x, # 10000, then
T(10000) = 100 = %- 100+ 1 = aT(10000) + 1.

Therefore, T is a solution of the recurrence (regardless of whether x, = 10000).
Furthermore,

Tls = (Tlw)ls = ¢ls = t.

Let T* be any solution of the recurrence that satisfies T*(S) = t. Then

T*(x) = t(x)

forall x € S, and
T*(z) = aT*(B(2)) + 1

forall z € x~, so T*|,~ = Ay. Therefore, T*|y, = ¢ = T|y,. By definition of the
recurrence,

T*l[l,xo] =f= T|[1,xo]-

If x, # 10000, then T*(10000) = 100 = T(10000). The functions T and T* have
domain

[1,00) = W U [1,x,] U{10000}.
Therefore, T* = T. (Of course, [1, ) is the simpler union W U [1, x,] if x, = 10000.)

d

Each equivalence class represents a degree of freedom in the recurrence. Observe that in
Lemma 13.9 neither the real-valued function on a transversal nor its extension to a
solution of the recurrence is required to be positive or non-negative.
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Definition. A subset S of (x,, ©0)\{10000} is dependent (relative to ~) if there exist
distinct x, y € S such that x~y. Otherwise, S is independent.

Of course, the transversals of ~ are precisely the maximum independent subsets of the
punctured interval (x,, ©)\{10000}. By Zorn’s Lemma, every independent subset of
(x9,0)\{10000} can be extended to a transversal of ~.

Corollary 13.10. If S is an independent subset of (x,, ©)\{10000} relative to ~, then
each real-valued function on S can be extended to a solution of the recurrence.

Proof. Lett:S — R. The independent set S is contained in a transversal S* of ~. The
function t can be extended to a function t*: S — R, which can be extended to a solution T
of the recurrence by Lemma 13.9. Of course, T is an extension of t. O

Lemma 13.11. There exists a transversal S of ~ with sup S = co.

Proof. Lemma 13.4(3) implies the interval ] = (10000, o) is the union of equivalence
classes. Lemma 3.7(4) implies each equivalence class is countable. Uncountability of |
implies J contains infinitely many equivalence classes. There exists a countable infinite
set

U= {Cl, Cz, C3, }

of disjoint equivalence classes that are contained in J. Define C,; = C,, N (n, o) for all
n € Z*, and let
U* ={c{,C;,C3,...}.

Lemma 13.6(3) implies C,, # @ for alln € Z*. The axiom of choice implies the
existence of a function r: U* — ] such that r(C,;) € C;; for all n, so r(C;;) > n. The set
r(U*) is independent relative to ~. Zorn’s Lemma implies (U*) is contained in a
transversal S of ~. Furthermore, sup r(U*) = o, so sup S = oo. O

The proof above of Lemma 13.11 uses Zorn’s lemma and the equivalent axiom of choice.
A constructive proof is provided after Lemma 13.14.

Corollary 13.12. The recurrence has a solution T that agrees with the exponential
function on an unbounded set. In particular, T is not ©(1).

Proof. By Lemma 13.11, there exists a transversal S of ~ with sup S = c0. Lemma 13.9
implies there exists a solution T of the recurrence with

T(x) =e*
forall x € S. O
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The preceding proposition shows that the recurrence does not satisfy the conclusion of
Theorem 2 of [Le]. We shall establish the existence of a particularly wild solution of the
recurrence.
Lemma 13.13. If x # 10000 is a positive real number and
0<y<10000 <z < oo,
then there exists a unique integer n that satisfies
B™(x) € [y, B(y)) U (B(2),z].
Proof. Lemma 13.1 implies
y < B(y) < 10000 < B(2) < z.

so [y, B(¥)) < (0,10000) and (B(z), z] < (10000, ).

Suppose x < 10000. Lemma 13.6 implies the set {i € Z: B(x) > y} of integers is non-
empty and bounded below and hence has a least element n. Then

B"1(x) <y < B™"(x).
B is an increasing function by Lemma 13.4(1), so

B"(x) = B(B" (x)) < B(y) < B(B™(x)) = B™(x).
Observe that
B™(x) € [y,B(y)) < [y,B()) U (B(2),z].

Let m be any integer other than n. Lemma 13.5 implies

B™(x) < B"l(x) <y
when m < n, and
B(y) < B™1(x) < B™(x)

when m > n. Therefore, B™(x) € [y, B(¥)). Lemma 13.4(3) implies B™(x) < 10000,
which implies B™(x) ¢ (B(2), z], so

B™(x) & [y,B(»)) U (B(2),zl.

Now suppose instead that x > 10000. Lemma 13.6 implies the set of integers
{i € Z:B'(x) < z} 1s non-empty and bounded below and hence has a least element n.
Then

B"(x) <z < B"1(x).
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Since B is an increasing function, we conclude that

B"*1(x) = B(B™(x)) < B(z) < B(B™'(x)) = B™(x).
Observe that
B™(x) € (B(2),z]  [y,B()) U (B(2),z].

Again let m be any integer other than n. Lemma 13.5 implies

z < B"1(x) < B™(x)
when m < n, and
B™(x) < B™(x) < B(2)

when m > n. Therefore, B™(x) ¢ (B(z),z]. Lemma 13.4 implies B™(x) > 10000,
which implies B™(x) € [y, B(y)), so

B™(x) & [y,B(»)) U (B(2),zl.
O

Lemma 13.14. If x, = 10000, then (B(2), z] is a transversal of ~ for all z > 10000. If
Xo # 10000, then [y, B(y)) U (B(z), z] is a transversal of ~ for all y € (x,, 10000) and
all z > 10000.

Proof. Letz > 10000 and

J = (x0,)\{100003},
SO
(B(z),z] € (10000,0) € J

by Lemma 13.1. Forall t € (0,10000), define

S(t) =[t,B(Y) U (B(2),z].
Lemma 13.13 implies that for each x € J and each t € (0,10000) there exists exactly one
integer n for which B™(x) € S(t). If B*(x) € J, then B"(x) € x~ and [x~ N S(t)| = 1.
If B™(x) ¢ ], then B™(x) ¢ x~ and x~ N S(t) = 0.

Suppose x, # 10000, so x, < 10000. Let y € (x,,10000), so S(y) < J by Lemma
13.1. Then |x~ N S(y)| = 1 forall x € ], i.e., S(y) is a transversal of the equivalence
relation ~.

Now suppose x, = 10000, so / = (10000, ). The interval J is B™-invariant for all

m € Z by Lemma 13.4(3). Letu € (0,10000). If x € ] and n € Z with B™(x) € S(u),
then x™ € JNS(u),sox™ € x~ and [x” NJ NS(u)| = 1. The set /] N S(u) is contained
in /, so J N S(u) is a transversal. Lemma 13.1 implies

JnS) = (B(2),z],
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so (B(z), z] is a transversal of ~. O

Constructive proof of Lemma 13.11. Let z > 10000. Lemma 13.1(3) implies
10000 < B(z) < z. If x, = 10000, define S = (B(z), z]; otherwise let t € (x,, 10000)
and define

S = [t,B(t)) U (B(2),z].

Lemma 13.14 implies S is a transversal of the equivalence relation ~. For each positive
integer n, define

z—B(z
=5+ 27O
and
Yn = B_n(xn)-
Let
X={x,:nezt}
Y = {YTL: ne Z+})
and

S =S -X)uY.
Observe that
X, € (B(2),z] = SN (10000, ).

Lemma 13.4(3) implies y,, € (10000, ), so y,, € (x,, ), which imples y,, € x5, i.e.,
X, = Yy . Therefore, S* is a transversal of ~. Lemma 13.4(1) combines with x,, > B(z)

to imply y,, > B1™"(z) foralln € Z*. Lemma 13.6(3) implies

lim B1™"(z) = oo,
n—->oo

SO
lim y, = oo,
n—->oo

which combines with Y € §* to imply sup §* = oo. O

Lemma 13.15. Let U be the set of all non-empty open subintervals of (x,, ) with
rational endpoints. There exists an independent (relative to ~) set I' along with a
partition IT of T" and a bijection 7: U — IT such that 7(u) € u and |w(u)| = |R| for all
u€elu.

Proof’. Define u* = u\{10000} for all u € U, so u* is non-empty for all such u. Let
U*={u*:ue U}
The axiom of choice implies the existence of a function A on U* such that A(u*) € u* for

all u* € U*. Define the function c¢: U — (x,, ) by c(u) = A(u*). Then c(u) € u and
c(u) # 10000 forallu € U.
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Lemma 13.14 implies the existence of a transversal S of ~ that satisfiesis | € S c |
where I is the interior of S and [ is the closure of I. There exists a functionn: U — Z
satisfying

B"W(cw)esScl

for allu € U. By Lemma 13.3, the function B"™): (0, 00) — (0,) is a
homeomorphism, so B*™ (u) is an open set containing the element B*®(c(w)) of I.
Therefore, the open set I N B*™ (1) is non-empty.

By Lemma 12.2, there exists a countably infinite partition P of R such that | N g| = |R|
for each element r of P, and each non-empty open subset g of R. Since U is also
countably infinite, there exists a bijection a: U = P. Let §: U — 2! be the function
defined by
S(w) = a(w) NI nB"W()

for eachu € U, so

S(w)cIcS c(xy)\{10000}
and |6(u)| = |R].

The elements of P are disjoint, so a(u) and a(v) are disjoint for every pair of distinct

elements u and v of U. Therefore, §(u) and & (v) are also disjoint for such u and v.
Since 6(u) c S and §(v) c S, we conclude that

(S(u)) N (5(v)) = Q.
Define m: U — 20 by
m(u) = B (§w))
forall u € U, so
w(u) € B~ (B”(u) (u)) =u C (xg, ).

Lemma 13.4 and 10000 & §(u) imply 10000 ¢ m(u), i.e.,
m(u) € u* < (xq,0)\{10000}.
The function B~™): (0, ) — (0, o) is a bijection by Lemma 13.3, so
lm(w)| = 6| = IRI.
In particular, m(u) # @. For each pair of distinct elements u and v of U, we have
W) Nnr@) € (t(w) n(z@) =(6w) n(6w)) =4,

so m(u) # m(v). Thus 7 is injective. Define I1 = w(U), so m: U — Il is a bijection from
U onto II. Also define
= U m(w),

ueu
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so ' € (xg,0)\{10000} and I is a partition of . Let x and y be distinct elements of T
There exist u,w € U such that x € w(u) and y € m(w), so

B"W(x) e su) cS
and
B"™)(y) € §(w) c S.

Ifu = w, then B*™ (x) and B"™(y) are distinct elements of S because B"™ is
injective, so

x* = (B"®(0) # (B"®()) =y~
If u # w, then
x“ Ny~ C (7T(u))~ n (n(w))~ = @,

so x~ # y~. Therefore, the set I' is an independent subset of (x,, ©)\{10000} relative
to the equivalence relation ~. O

We are now ready to show the existence of an extreme counterexample to Theorem 2 of
[Le] in the form of an erratic solution to the recurrence at the beginning of this section.

Lemma 13.16. The recurrence has a solution T such that
T(X) =R

for each non-empty open set X in (x,, ). In particular, the graph of T is dense in the
open half plane defined by the inequality x > x,.

Proof. Let U, T, I1, and 7 be as in lemma 13.15. Then |C| = |R| for all C € II. For all
such C, let C* be the set of bijections from C onto R, so C* # @. Define

S={Cc*: Cel}.
By the axiom of choice, there exists a function § on S such that 8(r) € r forall r € S.
Define a function @ on I[1 by a(C) = B(C*) for all C € II. Then a(C) € C*,i.e., a(C) is
a bijection from C onto R for all such C. Since II is a partition of I, there exists a
function t: ' = R such that
tle = a(C)
for all C € II. Corollary 13.10 implies t can be extended to a solution T of the
recurrence. Suppose X is a non-empty open set in (x,, ), so there exists w € U such
thatw € X. LetD = m(w),soD € [Tand D € w. Then
R=a(D)(D)=t(D)=T(D) € T(w) S T(X) SR.

Therefore, T(X) = R. O
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Uncountably many choices for T in Lemma 3.16. Examination of the proof of Lemma
13.16 reveals that there are uncountably many choices for the solution T with the
specified properties: Let C € 1. The set C* is uncountable, so there are uncountably
many choice functions ¢ on S that satisfy ¢(C*) € C* and ¢ (r) = B(r) for all

r € S\{C*}. Each such choice function determines a solution T,, with the specified
properties. Two choice functions determine the same solution if and only if the choice
functions are equal. Therefore, there are uncountably many solutions that satisfy the
conclusion of Lemma 3.16.

Theorem 2 of [Le] asserts that solutions to the recurrence at the beginning of this section
must be ©(1). However, the solution T described in Lemma 3.16 is extremely different
from ©(1) and is not even asymptically non-negative. The solution is wildly
unconstrained everywhere outside the domain of the base case.

We claim that for every continuous function k: (x,, ) — R and every non-empty open
subset O of (x,, ), there exists z;, z, € O such that

T(z1) > |k(z1)|

T(z2) < —lk(z2)I.

and

To verify the claim, observe that O contains a non-empty compact interval [L, M].
Continuity of k implies k is bounded on [L, M], i.e., there exists Y € R such that
|k(x)| <Y forall x € [L, M]. By choice of T, there exist z,,z, € (L, M) S [L, M] such
that
T(z,) >Y = |k(z1)|
and
T(z;) < =Y < —|k(z,)l.

For example, there exists u, w € O such that

T(u) > SuperExp(u)
and
T(w) < —SuperExp(w)

where SuperExp: R - R is defined by

e€

SuperExp(x) = e

We have demonstrated that Theorem 2 of [Le] is false, but is all lost? In later sections,
we describe replacements for the theorem and provide proofs that are adapted from the
arguments of [Le]. The new propositions have arguably simpler hypotheses. Modest
restrictions on the allowed recurrences imply that a strong form of the Akra-Bazzi
formula is satisfied. Recurrences admissible by the new theorems do not model recursive
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13. Infinitely Recursive Counterexamples to Leighton’s Theorem 2
algorithms that begin execution next week but terminated before the big bang (T'(z) large
negative).

Our main goals for this family of counterexamples to Leighton’s Theorem 2 have been
accomplished. However, we continue our analysis. We are especially interested in
solutions that are O(1).

Lemma 13.17. If T is a solution of the recurrence, then the formula
T(x) = a™(T(B™(x)) — 100) + 100
is satisfied for x > x, and n € Z when x and n satisfy any of the following conditions:
(1)yn=0.
(2) B™(x) > x,.
(3) x = 10000.

Proof. Recall that a = 99/100. Observe that a® = 1 and B is the identity function on
the interval (0, ), so
T(x) = a®(T(B°(x)) — 100) + 100.

for all x > x; (indeed, the identity is true for all x in the domain of T, 1.e., x > 1).
Suppose n = 0 is an integer such that

T(x) = a™(T(B™(x)) — 100) + 100
for all x > x,. Corollary 13.2 implies B"(x) > x, for all such x, so

T(B™(x)) = aT(B™"*'(x)) + 1,
which implies
T(x) = a™(aT(B™*'(x)) — 99) + 100

= a"*1(T(B™*'(x)) — 100) + 100.
By induction, the formula is satisfied when condition (1) is true. Now suppose instead

that (2) is true, i.e., B™(x) > x,. We may assume (1) is false, i.e., n < 0. Then —n > 0,
and

T(B"(x)) = & (T (B™(B™(x))) — 100) + 100
= a™™(T(x) — 100) + 100.
Then
T(x) = a™(T(B™(x)) — 100) + 100

as required. Suppose (3) is true. If x > 10000, then Lemma 13.4(3) implies
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13. Infinitely Recursive Counterexamples to Leighton’s Theorem 2

B™(x) > 10000 > x,;
if x = 10000, then Lemma 13.4(2) implies
B™(x) = x > x,.
Condition (2) is true, so the formula is satisfied. O

Corollary 13.18. Suppose T is a solution of the recurrence and either x > 10000 or
x = 10000 # x,. Then
lim T(B™(x)) = 100.
n——oo

Proof. We conclude from x, € [686,10000] that x > x,, which combines Lemma 13.17
and x = 10000 to imply

T(x) = a™(T(B™(x)) — 100) + 100,
SO
T(B™(x)) = a™™(T(x) — 100) + 100.

Recall that a = 99/100, so

lim a™ = lima™ =0,
n—->—oo n—-oo

which implies
lim T(B™(x)) = 100.
n—-—oo
O

Restriction to an equivalence class. If T is a solution of the recurrence and x > 10000,
then Corollary 13.18 implies T(z) approaches 100 as z in x~ approaches . (See
Lemmas 13.5 and 13.6.)

Dangerous Bend. Although every solution T has a ©(1) restriction to each equivalence
class in (10000, o), Corollary 13.12 (also Lemma 13.16) implies the existence of
solutions that are not @(1). Each such solution has non-uniform convergence on
equivalence classes in (10000, o).

Lemma 13.19. Let T be a solution of the recurrence. Either T (x) = 100 for all
x > 10000 or

lim sup |T(x)| = oo.
x—10000%

If x, < 10000, then either T(x) = 100 for all x € (x,, 10000) or

lim sup |T(x)| = oo.
x—10000~
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Proof. Suppose w > x, such that T(w) # 100. If n is any non-negative integer, then
Lemma 13.17 implies

T(w) = a™(T(B™(w)) — 100) + 100,

ie.,
T(B™"(w)) = a™™(T(w) — 100) + 100.
The limit
lima™ = o
n—-oo
implies

lim [T(B™(W))| = co.
n—->0oo

Lemma 13.6(1) implies
lim B™(w) = 10000.

n—-oo

If w > 10000, then Lemma 13.4(3) implies B™(w) > 10000, so

lim sup |T(x)| = oo.
x—10000%

If w < 10000, then Lemma 13.4(3) implies B™(w) < 10000, so

lim sup |T(x)| = oo.
x—10000~

Lemma 13.20. Let T be a solution of the recurrence. The following statements are
either all true or all false:

(1) T(x) = 6(1).

(2) T(x) approaches 100 as x approaches oo.

(3) T is bounded on (B(x), x) for some x > 10000.

(4) T is bounded on (B(x), x) for all x > 10000.

(5) T is bounded on all bounded subsets of (x, o) for some x > 10000.
(6) T is bounded on all bounded subsets of (x, ) for all x > 10000.

(Of course, (5) could specify x = 1 instead of x > 10000, which is specified for
symmetry with (6).)

Proof- We will show (6) = (5) = (4) = (3) = (2) = (1) = (3) = (6) and the proposition
will be proved. If (2) is satisfied, then

50 < T(x) < 150

for all sufficiently large x, so T(x) = 0(1), i.e., (2) implies (1). The interval (10000, o)
is non-empty, so (4) implies (3) and (6) implies (5).

Suppose T(x) = O(1), which implies T is bounded on (¢, ) for some real ¢ > 1. By
Lemma 13.3, there exists u > 0 such that B(u) > max(c, 10000). Lemma 13.4 implies
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13. Infinitely Recursive Counterexamples to Leighton’s Theorem 2

u > 10000. The interval (B(u),u) is contained in (c, ), so T is bounded on (B(u), u),
i.e., (1) implies (3).

Now suppose (5) is satisfied, i.e., T is bounded on all bounded subsets of (z, ) for some
z > 10000. Lety > 10000 and define Y = (B(y),y). Lemma 13.1(3) implies

y > B(y) > 10000, so Y is non-empty and contained in (10000, o). Lemma 13.6(3)
implies B™*1(y) > z for some integer m. Lemmas 13.3 and 13.4(1) imply

B™(Y) = (B™*(y), B™(¥)),

so B™(Y) is a bounded subset of (z, ), which implies T is bounded on B™(Y). Lemma
13.17 implies

infT(Y) = a™ - (infT(B™(Y)) — 100) + 100 > —oco
and

supT(Y) = a™ - (sup T(B™(Y)) — 100) + 100 < oo,

i.e., T is bounded on Y, so (5) implies (4).

We now assume (3) is satisfied, i.e., T is bounded on (B(w), w) for some w > 10000.
Lemma 13.1(3) implies B(w) < w. Then

sup ]IT(x)I = max(lT(w)I, sup |T(x)|> < oo,

x€(B(w),w x€(B(w),w)
In particular, T is bounded on (B(w),w]. Lemmas 13.4(3) and 13.5 imply
10000 < -+ < B3(w) < B?(w) < B(w) <w < B '(w) <B?(w) <B3(w) < ---.

Lemma 13.6 says
lim B™(w) = 10000

n—-oo

and
nl_i)moo B™(w) = oo.
For each integer n, define
Sn = (B™1(w), B™"(W)],

so S, € (10000, ). Let

L, = infT(S,)
and

Un = sup T(Sy),

so Ly > —oo, and U, < 0. Lemmas 13.3 and 13.4(1) imply B~"(S,) = S,. Lemma
13.17 implies

L,=a"-(Ly—100) + 100 > —oo
and

U,=a"-(Uy—100) + 100 < oo,
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Observe that

lim a™ = lima™ =0,
n—-—oo n—-oo

SO
lim L, = lim U, = 100.
n——oo n—-»—oo

Let € > 0. There exists r € Z such that L,,, U, € (100 — &,100 + ¢) foralln < r. Then
|T(x) — 100]| < ¢ for all

x € US” = (B"(w), ).
n<r
Therefore,

lim T(x) = 100,
X—00

i.e., (3) implies (2). Now let v > 10000, and let Q be any bounded subset of (v, ), so
infQ > 10000 There exists integers & and 8 with @ < f such that Bf(w) < infQ and
sup Q < B%(w). Then

B-1
Q € (B2 (), B*w)] = | sn
n=a
Therefore,
infT(Q) = min L, > —
asn<f
and
supT(Q) < max U, < o,
asn<f
so T is bounded on Q. Thus (3) implies (6) as required. O

If T is a ©(1) solution of the recurrence, then
lim T(x) = 100
X—>00

by Lemma 13.20. However, the family of ©(1) solutions does not approach 100
uniformly:

Lemma 13.21. For all ¢ > 0 there exists a solution T of the recurrence and an interval
I < (10000, o) with length(I) > c such that T is ©(1) and T (x) = e* forall x € I.

Proof. Let c > 0. Observe that

. - x
Jim (x — B)) = Jim (55~ V%) = >

so there exists z > 10000 such that z — B(z) > c. LetI = (B(2),2), so
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length(l) =z — B(z) > c.

Lemma 13.14 implies [ is contained in a transversal of the relation ~, so I is independent
relative to ~. Corollary 13.10 implies there exists a solution T of the recurrence such that
T(x) =e* forall x € I,so T is bounded on I. Lemma 13.20 implies T is ©(1). O

Let T be as in Lemma 13.21, so T is a ©(1) solution of the recurrence such that
T(u) # 100 for some u > 10000. Lemma 13.19 implies T is unbounded on the
bounded interval (10000,10001). We conclude that the condition x > 10000 of
Lemma 13.20(6) cannot be replaced with the condition x = 10000.

For future reference. The following proposition is used in Section 19 by a critique of
Leighton’s Lemma 2.

Lemma 13.22. If x, = 10000, then
xli% (x - (bx + h(x))) = 0.

Proof. Lemma 13.1(3) implies
Xo <B(x) <x
for all x > x,, so
0<x—B(x)<x-—x
for all such x. Then

0 <lim inf(x - B(x)) < lim sup(x - B(x)) < lim (x — xy) =0,
x-xg + x-xg

X=X
)
lim inf(x — B(x)) = lim sup(x — B(x)) =0,
x—xg x-xg
ie.,
lim (x — B(x)) = 0.
x-xg
The proposition follows from B(x) = bx + h(x) for all x > x,. O
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14. Satisfaction of Hypothesis by Infinitely
Recursive Counterexamples

In this section, we show that the family of recurrences in Section 13 satisfies the
hypothesis of Theorem 2 of [Le] with p = —1 and € = 0.74. Observe that ab? = 1 and
ab? # 1 for all ¢ € R\{p} as required by Theorem 2.

As in Section 13, we let x, € [686,10000] and a = b = 99/100 and define functions
g,h:(0,0) > Rby g(x) =1 and

h()—{ 0, forl <x < x,
x — Wx, for x > x,.

In the notation of [Le], we have a; = a, b, = b, hy = hand k = 1. Condition 1 of
Theorem 2 is obviously satisfied: a > 0, b € (0,1), k is a positive integer, the domain of
the recurrence is [1, ), the function g is non-negative and satisfies Leighton’s
polynomial-growth condition relative to {b} (with ¢; = ¢, = 1), and

Xo > 100 = max(100/99,100) = max(1/b,1/(1 — b)).
As explained in Section 13, condition 3 of Leighton’s Theorem 2 is satisfied with a
caveat: There is a potential ambiguity in the statement of the condition. Some readers
may consider the condition to be satisfied only when x, = 10000.

For all x > x4, we have

loge/Z x> ]og‘g/2 xo = log®37 686 ~ 2.002 > 2,
SO

11+ . <1<1+1)—3<1
2 logé/2x) 2 2) 4

211 ! >2<1 1)—1
loge/2 x 2)

and
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Thus conditions 4(c) and 4(d) of Leighton’s Theorem 2 are satisfied for all such x.

Satisfaction of condition 2 for our choice of ¢ is a consequence of Lemma 14.2, whose
proof uses the proposition below.

Lemma 14.1. Let § be a real number, and define A: (1,0) — R by
At) =t —logf t.
If x € (1, ) such that A(x) > 0 and logx > 26, then A'(x) > 0.

Proof. 1t follows from
Vx —268logé ' x

1) = 2x ’

logx > 28, and (log®~*x)/(2x) > 0 that

lagS
Vx —log x=/1(x)20.

) > 2x 2x

Lemma 14.2. Let § be a real number and define A: (1,0) — R by

At) =+t —logf t.

If ¢ € (1, 00) such that A(c) = 0 and log ¢ > 26, then |, «) is an increasing function.
In particular, A(x) > 0 for all x > c.

Proof. Let
S ={x>c: Aand X are positive on (c, x]},

s0 S € (c,) and infS > c¢. Observe that A and A" are positive on S.

Forallw € S and all v € (¢, w] we have v > ¢. The functions A and A’ are positive on
(¢, v] because (¢, v] € (c,w]. Thus v € S for all such v, i.e., (c,w] € S forallw € S.

The set S is connected, i.e., S is an interval, because

(o, B) c (c,B] € S.
foralla,f € S witha < .

Lemma 14.1 implies A’'(¢) > 0. Continuity of A’ implies there exists d > ¢ such that A’
is positive on (¢, d]. Then A is positive on (c, d] since A(c) = 0. Therefore, d € S (in
particular, S # @) and sup S = d. Furthermore, (¢,d] € S, so infS < c¢. Therefore,
infS = c.
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Lety = sup S, soy > c¢. Connectivity of S implies (¢,y) € S, so A and A’ are positive
on (c,y). We claim y = co. Suppose instead that y < co. Positivity of 2’ on (¢, y)
implies

A(y) > A(c) = 0.

Continuity of A implies there exists z > y such that A is positive on [y, z], so 1 is positive
on

(c,z] = (c,y) U [y, zl.
For all u € (c, z], we have
logu > logc > 26.

Lemma 14.1 implies A’ is positive on (c, z]. Thus z € S, which contradicts
zZ >y =supS.
Therefore, y = oo, i.e., sup S = oo. The set S is a subinterval of (¢, ®) with infS = ¢, so

S = (¢, ). The lemma follows. O

Lemma 14.2 combines with

V686 — log'*¢ 686 = V686 — log'74 686 ~ 0.00673 > 0
and
log 686 ~ 6.53 > 3.48 = 2(1 + ¢)
to imply
Vvt >log'*ét

forall t = 686. If x > x,, then x > 686 and

Vx x
Of course,
Xo
|lh(xg)| =0 < ———.
0 ]0g1+£ X,

Therefore, condition 2 of Theorem 2 is satisfied. It remains to establish compliance with
conditions 4(a) and 4(b). We start with a simple observation:

Lemma 14.3. If u > 0and 0 < a < 1 then

1+w)* <1+ au.
Proof. Define 2: R = R by
Ax) =14 ux — (1 +u)*.
Since

A(0) =1(1) =0,
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there exists ¢ € (0,1) such that A'(c) = 0. The second derivative of A is
A'(x) = -1 +uw)*log?(1 + u).

Positivitiy of u implies A"’ is a negative function, so A’ is a decreasing function.
Therefore, A'|(_o,cy > 0 and A'|(¢,c0) < 0, 50 A|(_co ¢] is increasing and A|c e is
decreasing. Then A(x) > A(0) = 0 for all x € (0,c] and A(x) > A(1) = 0 for all

x € [c,1). The function A is positive on (0,1) because (0,1) = (0,c] U [c,1). In
particular, A(a) > 0. O

Conditions 4(a) and 4(b). Let x > x(, so x = 686. Since p = —1, conditions 4(a) and
4(b) of Leighton’s Theorem 2 are equivalent to the inequalities

(1—%)_1 1+ ! zu;z
blog+te x loge/2 (bx + logﬁf x) logé/2 x
and
<1 + bl;l_’_e)_l 1- ! <1- g;/z
08" "X logé/2 (bx + —logﬁg x) log®* x

respectively. Observe that
logx > log 686 > 1,

99
blog'*¢x > blog!'*¢ 686 = — - log?7* 686 > 1,

100
b + X > by > 99 - 686 S
x log*€ x *="100 ¢
and
log®/? (bx + Togi™e x) > log/2(e) = 1.
Let

_ 1
Z= blog'*é x’

so 0 < z < 1, which implies 1 — z > 0. We conclude from

1-20(1+2)=1-2z2<1
that
1-2)1t>0+2)>1,

1e.,
-1

1—— 1+4——m>1
( blog”fx) > +blog1+£x>
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Positivity of z implies (1 + z)71 < 1, i.e.,

-1

1
14— 1.
( +blog1+£x) <
Observe that

1
1+ p
logé/2 (bx + W)
and
1
1= X
g/2
log (bx + Tog+e x)
are positive. Therefore,
(1) (14 1 S 1
_blog”fx) €/2< X ) €/2< X )
log bx + Tog " x log bx + Tog e x
and
(1+—) (1 1 <1 1
b ]0g1+£ X) B /2 ( L) B /2 ( L) .
log bx + Tog " x log bx + Tog e x
Conditions 4(a) and 4(b) are true if
1
— <
b + Togitex =
Therefore, we may assume
1
b+ logl*¢ x
Let
c = log (b + logi*e x)'
soc > 0. Since b < 1, we have
1
! @ )
c < log +log1+£x

The function A: [0, ) — R defined by A(t) = t — log (1 + t) is positive on the interval
(0, ) because A(0) = 0 and the derivative A'(t) = t/(1 + t) is positive on (0, c0).
Therefore,

1

10g1+£ X '

Cc 8/2
a=(1+-—) .
log x

c <

Define
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Positivity of ¢, €, and log x implies d > 1. Lemma 14.3 implies

ce

d<1
+210gx

since £/2 = 0.37 € (0,1). Observe that

X
1( —): logx.
og bx+log1+£x c +logx

Now

(1) (14 !
~ blogl*e x) /2 ( X )
logé/? ( bx + Tog ™ x

1 1
14—l 4+—
> ( *5 log1+e x) ( * (c+ logx)£/2>

1 1
1 1 .
>t ( 3 loglte x) ((c + log x)£/2>

Condition 4(a) is satisfied if

1 1
1
( b log'+e x) ((c + logx)€/2> > loge/2 x’

which is equivalent to

Therefore, condition 4(a) holds if

1 S ce
blog'*éx = 2logx’

As stated earlier,
1
logl+¢ x >c
It suffices to show
2logx > be,

which follows from logx > 1 and be = 0.99 - 0.74 < 1. Therefore, condition 4(a) is
satisfied. Condition 4(b) can be written as

(1 + ! ) 1 1 1 <1 !
blog'*e x dlogé/2x )~ logé/2 x’
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which is equivalent to

d—1 dlogt?x —1

1 = <l4—,
+ d(logé’2x —1) d(log&’?2x — 1) blog+te x

ie.,
b(d — Dlog'*ex < d(log®?x —1).
Observe that

bce bcelog® x 1 belog® x
log" "¢ x = < :
2logx 2 log*é x 2

b(d —1)log'téx <

be be _0.99-0.74

2logx — 2log 686 2log 686

and
d(log®? x — 1) > log&/? x — 1 > log®/? 686 — 1 = log®37 686 — 1 ~ 1.002.

Therefore, condition 4(b) holds and the hypothesis of Theorem 2 is satisfied.
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15. A Finitely Recursive Counterexample
to Leighton’s Theorem 2

Section 13 describes a family of infinitely recursive counterexamples to Theorem 2 of
[Le]. Each member of the family has a solution that agrees with the Akra-Bazzi formula
but also has infinitely many solutions that differ wildly from the Akra-Bazzi formula.

In this section, we define a related (proper) divide-and-conquer recurrence that also
satisfies the hypothesis of Theorem 2. It is finitely recursive and hence has a unique
solution. However, the solution does not conform to the Akra-Bazzi formula.

Let x, = 10000 and define b, B, and ~ as in Section 13, i.e., b = 99/100, the function
B: (0,00) — (0, ) is defined by B(x) = bx + /x, and ~ is the equivalence relation on
(x4, 00) with y~& when there exists an integer i with B(y) = 6.

Lemma 13.3 implies B is a bijection of (0, ) onto itself, so each integral power of B is
defined and is a bijection from (0, ) onto itself. Here as in Section 13, powers of B
represent composition of functions. Lemma 13.4(3) implies (x,, ) is invariant under
each integral power of B.

Lemma 13.1(3) implies

Xo < B(xg+1) <xg+1.
Define a half-open interval

Y = (B(xy+1),x, + 1].

Lemma 13.14 implies Y is a transversal of the equivalence relation ~. By Lemma
13.7(3), for each x € (x,, ) there exists a unique corresponding integer a with
B%(x) € Y. Define n: (xy, ) = Z by B (x) € Y. The function x = B™"™)(x)
on (x,, ) is constant on each equivalence class, i.e.,

Bn(xl)(x1) = Bn(xZ)(xz)
when x4, x, € (x,, ©) with x; ~x,. Observe that n(x) = 0 ifand only if x € Y. When

x > xy + 1, we have
B"®(x) < x = B%(x),
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son(x) > 0 by Lemma 13.5. When x < B(x, + 1), we have
B"®(x) > x = B%(x),

son(x) < 0 by Lemma 13.5. B-invariance of (x,, ©) implies is B(x) € domain(n) for
all x € (x,, ). Of course, n(x) = n(B (x)) + 1 for all such x because

Bn(B(x))+1(x) — Bn(B(x))(B(x)) €Y.

For each positive integer j, define

(xg+1)—B(xy+1)

Then t4, t,, ts, ... is a decreasing sequence in Y with t; = x, + 1 and

jooo

For each positive integer j, define the half-open interval
Y = (1 4]
Observe that Y, Y, Y3, ... are disjoint non-empty sets and
Y = U Y;.
j=1

There exists a surjection A:Y — Z* with y € V), for all y € Y. Define a non-negative
integer-valued function d: [1,©) — N by

0, forx < x,

d(x) = {max (n(x) +1 (Bn(x) (x)) , 1) , for x > x,,

sod(y) = A(y) forall y € Y. Observe that Z* = A(Y) = d(Y) S range(d), which
implies d is unbounded on Y and d is a surjection onto N. The function d is positive on
(%9, ). When d(x) > 1, we have x > x, and

d(x) = n(x) + 1 (B"®(x));
of course, x~B(x), so

pn(B() (B (x)) — gn) (),

which combines with n(B (x)) = n(x) — 1 to imply
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d(B(x)) = max (n(x) -1+ (B”(x)(x)), 1) = max(d(x) —1,1) = d(x) — 1.

When d(x) = 1, we have x > x; and n(x) < 0, so x € (xq, X, + 1], which implies
bx € (bxy, bxy + b] < (bxy, xq] < [1, %],

so d(bx) = 0. Since (x,, ) is B-invariant and (bx,, ©) = (bx,, x¢] U (x4, ), there is
a function r: (x5, ) — (bx,, ) defined by

_( bx, ford(x) =1
rx) = {B(x), ford(x) > 1.

Observe that range(r) < [1,00). Lemma 13.1(3) and b < 1 imply r(x) < x for all
x € domain(r).

When d(x) = 1, we have r(x) € [1,x,] and d(r(x)) =0=d(x)—1. Whend(x) > 1,
we have

d(r(x)) = d(B(x)) =d(x) -1,
i.e., d satisfies the recurrence

B 0, for x € [1, x,]
d(x) = {d(r(x)) +1, for x > x,.

Since range(d) = N, the recurrence above satisfied by d must be finitely recursive.
Lemma 8.2 implies d is its unique solution.

Define g: [b, @) - R by g(x) = 1, and define h: [1,0) — R by

0, whend(x) <1

h(x) = {\/; when d(x) > 1,

so h is zero on [1, x,], and r(x) = bx + h(x) for all x € (x,, ). Let D = [1, ),
I = (xg,), and a = 1. Define the constant function f: [1,x,] = R by f(x) = 1.
Then

(D,I,a,b,f,gl,,hl,)

is a divide-and-conquer recurrence, and d (x) is the depth-of-recursion at x relative to
D — [ for all x € D. In particular, recursion is finite. Lemma 8.2 implies the recurrence
has a unique solution T: D — R, which satisfies

1, for x € [1, x,]

T@) = {T(r(x)) +1, for x > x,.

Define
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15. A Finitely Recursive Counterexample to Leighton’s Theorem 2

S={meN: T(x)=d(x)+1forallx e d*({{m}) }.

Here d~1({m}) is the preimage of {m} under d. Observe that d~1({0}) = [1, x,], and
T(w)=1=d(w)+1forallv € [1,x,],s00 € S. Supposem € S, som+1>0. If
w e d1({m+ 1}), thenw > x,, so

d(r(w)) =d(w)—1=m.
Then T(r(w)) =m+1,so0

Tw)=T(rw))+1=m+2=dw) + 1L

Therefore, m + 1 € S. By induction, S = N, so T(x) = d(x) + 1 for all
xe | Jaimy =arw =[Le)
m=0

ie,T(x) =d(x)+ 1forallx € D.

We observe that our recurrence for T has unbounded depth of recursion on Y because d is
unbounded on Y. Furthermore, the unique solution T is unbounded on Y because T — d
is constant. The set Y is bounded, so the recurrence does not satisfy the bounded depth
condition, and the solution T is not locally ©(1).

Theorem 2 of [Le] applies to recurrences of the form

0(1), forl < x <x,
k
) = Z a; (bix + hy(x)) + g(x), for x > x,

i=1

that satisfy four conditions. We will show that our recurrence for T satisfies the
hypothesis of Leighton’s Theorem 2 with a; = a, by = b, k = 1, hy = h, our choices of
X, and g, and

log./x log 100
oo l08VF 108100, 0,
loglog x, loglog 10000
Observe that T is ©(1) on [1, x,] and
k
T(x) = z a; T(bl-x + hi(x)) + g(x)
i=1

for all x > x as required. Condition 1 of Theorem 2 is satisfied because the domain of
the recurrence is [1, ),
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15. A Finitely Recursive Counterexample to Leighton’s Theorem 2

Xo = 10000 > max(100/99,100) = max(1/b,1/(1 — b)),

a>0,be€(0,1), k=1,and g is a non-negative function that satisfies Leighton’s
polynomial-growth condition relative to {b} with ¢; = ¢, = 1. Observe that

bx + h(x) € [b,») = domain(g)

for all x > 1 because b > 0 and h is non-negative. Since g is constant, we conclude that
condition 3 of Theorem 2 is satisfied with ¢; = ¢, = 1.

Let x > x,. Observe that

log(log'*¢ xo) = (1 + &) (loglog x) = log \/x,,
SO
log!*€ x, = \/x, = 100.

Jxo —logt*ex, =0

log xo = 1log 10000 ~ 9.2 > 4.15 = 2(1 + ¢)

Lemma 14.2 combines with

and

to imply
Vx > log!*+€ x.

Vx B x

g1+£ x 10g1+£ X

Of course, logx > 0, so

lh(x)| < Vx < Vx- S

as required by condition 2 of Theorem 2.

Theorem 2 defines p to be the solution of

i.e., b?P = 1,s0p = 0. Observe that

blog'*éx = blog!*¢ x, = 99,
which implies

1
1 -
blog!+*é x >0
and
1+ ! >0
blogi*ex =
SO

193



15. A Finitely Recursive Counterexample to Leighton’s Theorem 2

1 p 1 p
) =(1+——) =1
(1 blogl+te x) (1 * blogl+te x)

In particular, the fractions and the pth powers are defined. Now conditions 4(a) and 4(b)
are equivalent to

1 1
1+ p =1+ longx
/2 A
log (bx + Tog+ x)
and
1 ! <1
2 X\~ log2x
log (bx + Tog+ x)
respectively, which are equivalent to
1
b+—<1
+ logl*eé x =

since € > 0. The various denominators are defined and positive because x = xy > 0,

bx = bxy > 1,
and
logx > logxy > 0.

In particular, the denominators are non-zero and the fractions are defined. Observe that

1+e>e>0,s0
b + ! <b+ ! _99+ ! =1
logitéx — logl*¢x, 100 100 '

i.e., conditions 4(a) and 4(b) are satisfied. The inequalities logx, > 1 and € > 1 imply

log/2 x > log®/? xy > \/logx, = 3 > 2,
SO

and

which are strict versions of conditions 4(c) and 4(d). We conclude that the recurrence
satisfies the hypothesis of Leighton’s Theorem 2.

Suppose T satisfies the Akra-Bazzi formula, which says (with 0 substituted for p) that
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15. A Finitely Recursive Counterexample to Leighton’s Theorem 2

1
T(x) =0 (xo (1 +] Tov1 du)) = 0(log x).

Then there exists z = 1 such that T is bounded on each bounded subset of (z, ).
Lemma 13.6(3) implies the existence of a negative integer q such that

B (xy + 1) > z.
Lemmas 13.4(1) and continuity of B imply
BI(Y) = (B (xo + 1), B (xo + 1],
so B4(Y) is a bounded subset of (z, ), which implies T is bounded on B9(Y). Then d

is bounded on B9(Y) because T — d is constant. However, for each positive integer j, we
have Bq(tj) € BI(Y),

n(Bq(tj)) =—q >0,
2(B (B9(5)) ) = () =i

d(BU(t;)) =j—q>].

and

SO

Therefore, d is unbounded on B4(Y). We conclude that T violates the Akra-Bazzi
formula.

For future reference. The following proposition is used in Section 19 by a critique of
Leighton’s Lemma 2.

Lemma 15.1. The divide-and-conquer recurrence defined in this section satisfies

(x - (bx + h(x))) =0.

inf
xXo<bx+h(x)<x<xg+1

Proof. Let u be the infimum defined above, so u > 0. Let § > 0. Lemmas 13.1(3),
13.4, and 13.6(1) imply the existence of a positive integer m with the property that

Xo <B(() <{<B™(xy+1) <min(xy +6,x5+ 1)
where { = B™(t,,42). (Recall that xy < t,,., < t; = xo + 1.) Observe that

¢{—B({) <6.

We conclude from
B™™({) = tm42 € (tmezstmsz]l =Y CY

195



15. A Finitely Recursive Counterexample to Leighton’s Theorem 2

that n({) = —m and A(B™™({)) = m + 2, so d({) = 2, which implies () = B({),
ie.,

B({) = b{ + h(?),

SO
Xo<b{+h(()<{<xy+1
and

{— (b7 +h(D) <.

Then u < § forall § > 0, so u < 0, which combines with y > 0 to imply u = 0.
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16. Base Case of the Induction

Leighton’s Theorem 2 claims all solutions T: [1, ) — R to certain recurrences of the
form
0(1), for x € [1,x,]

k
TG = Z a;T(bix + hi(x)) + g(x), for x > x,

i=1

satisfy the Akra-Bassi formula, T (x) = G)(Z(x)) where the function Z: [1,0) — R is
defined by
X
g(w)
— 4P
Z(x) =x (1 + —[1 il du).

Here xy, k,ay, ..., ag, by, ..., by, g, hq, ..., hy, and p are as in [Le]. In particular, x, > 1.

The claimed inductive proof in [Le] asserts the existence of positive real numbers
cs and cg that satisfy

1 1
Cs (1 + longx> Z(x) < T(X) < Ce (1 - l()gng> Z(X)

for all x € (x,, ©) where € > 0 satisfies conditions 2 and 4 of Theorem 2. However, the
base case of Leighton’s inductive argument consists of the inequalities above for all

x € [1,x,], even though [1, x,] and (x,, ) are disjoint. When x = 1, the inequalities
involve division by zero and are equivalent to

1 1
1+4-)<T(1) < 1-—=).
C5< +0)— ()—C6< 0)
The only plausible interpretation (in context) is the obviously false chain of inequalities
+00 < T(1) < —oo.

An implausible interpretation is the trivial chain of inequalities
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16. Base Case of the Induction

—00 < T(1) < +oo.

Fortunately, usage of the base case by the inductive step of the argument only requires
that the asserted inequalities hold for all x € S where

S ={x <xy: x =b;t + hy(t) for some t > x, and some i € {1, ..., k}}.

The inductive step requires that 1/log?/?(u) is a real number for all u € S. In particular,
1 ¢ S regardless of how we interpret 1/0. An obvious attempt to save the argument of
[Le] requires that 1 € S. In Section 19 we exhibit a recurrence that satisfies the
hypothesis of Theorem 2, but has 1 € S and infS < 1. However, the intended domain of
T in [Le] is evidently [1, o). We consider the recurrence described in Theorem 2 to have
no solution when infS < 1. For the remainder of this section, we assume 1 € S and
infS > 1,505 € (1,x,]. (Indeed, we shall soon strengthen the restrictions on S.) In
addition to enforcing consistency with the recurrence’s domain and avoiding claims of
finite quotients with denominators that are zero, the assumption also eliminates
consideration of special cases in the interpretation of log?/2 x for x < 1. Arbitrary real
powers of negative numbers and logarithms of non-positive numbers are of course
problematic.

By hypothesis, T|j;,x,) = ©(1), which implies T'|s = ©(1). The function g is non-
negative and satisfies Leighton’s polynomial-growth condition relative to the set

so domain(g) contains [b,y;,, ©). Corollary 2.17 implies g has polynomial growth on
the interval [b,y;,, ©), which contains [1, ). Lemma 2.2(2) implies g has polynomial
growth on [1, ). Leighton implicitly assumes that g is locally Riemann integrable on
[1,00), so g is tame on [1,00). Lemma 10.6 implies Z is locally ©(1), so Z|s = ©(1).

There exist S-compatible candidates for c; and ¢g4 if and only if

1
sup|l1+———— | < oo
xEE( loge/z X)

) 1
it (1= gz >0

respectively, i.e., infS > 1 and the more stringent inf S > e, respectively. We conclude
that a suitable version of the base case of Leighton’s inductive argument is true if and
only if inf S > e. In later sections, we provide a replacement for Theorem 2 with a
modified proof that does not require any such restrictions on S.

and
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16. Base Case of the Induction

Failure of restriction to S of base case of induction does not imply conclusion of
Theorem 2 is false. Let x, = 2e anda = b = 1/2. Let g and h be the identically zero
functions on [b, ©) and [1, ) respectively. We claim the divide-and-conquer recurrence

1, for x € [1, x,]

) = {aT(bx + h(x)) + g(x), for x > x,,

1e.,
1, for x € [1,2¢]

Tt = {%T (g), for x > 2e,

satisfies the hypothesis of Leighton’s Theorem 2 with p = —1 and € = 3. The base case

of the recurrence is obviously ©(1). Of course, a; = a, b; = b, hy = h,and k = 1 in the

language of [Le]. Since a = b # 0, we have ab? = aa™! = 1 as required.

Condition 1 of Theorem 2 is satisfied because [1, o) is the domain of the recurrence,
Xo>2=1/b=1/(1-b),

a>0,be(0,1), k=1, and g is a non-negative function that satisfies Leighton’s

polynomial-growth condition relative to {b} with ¢; = ¢, = 1. Condition 2 is satisfied

because h is identically zero and x, > 1. Furthermore,

[bx + h(x),x] = [x/2,x] c [1/2,») = domain(g)

for all x = 1. Then condition 3 is satisfied with ¢; = ¢, = 1 because g is identically
zero. Conditions 4(c) and 4(d) follow from

log&/2 x > log®/? x, = log®/2(2e) = 2.2 > 2
for all x > x,. Observe that
log!*¢ x > log'*¢ x, = log*(2e) ~ 8

for all such x, so
blog'*éx > 1,

x
bx + ——— > bx = bx, = ¢,

logl*e x
and
b+ !
logl*e x
As in section 14, inequalities above combine with p = —1 to imply conditions 4(a) and

4(b) are satisfied. Therefore, the hypothesis of Theorem 2 is satisfied. Furthermore, the
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16. Base Case of the Induction

recurrence is finitely recursive. Lemma 8.2 implies there exists a unique solution 7.
Theorem 2 correctly predicts that

1
T(x) = 0 (—)
X
However,
inf (bx + h(x)) =e.
x>x0

Therefore, the restriction of the base case of Leighton’s induction to the set S is
unsatisfied.

Our claim about the asymptotic behavior of the solution T is easily verified. Let d be the
depth-of-recursion function for the recurrence, and define

A={neZt: xT(x) € (xy/2,x,] forall x > x, with d(x) = n}.

If u > x, such that d(u) = 1, then u/2 € [1,x,], so T(u/2) = 1 and

uT (u) = %T (%) - g € (x0/2, %o].

Therefore 1 € A. Now supposen € A,son = 1. Givenw > x, withd(w) =n + 1, we
have d(w/2) = n,sow/2 > x, and

WT(w) = %T(g) € (xo/2,%,].

We conclude that n + 1 € A. By induction, A = Z*, which combines with finite
recursion to imply

xT (x) € (x0/2,%]
for all x > x,, i.e.,

e 2e
- <Tkx)<—
X X

for all such x. (Indeed, the inequalities are satisfied for all x > x,/2, i.e., x > e.)
Therefore,

1
@ =o(-)
X
as claimed.
Main counterexamples do not involve failure of restricted base case. The

counterexamples in Sections 13 and 15 to Theorem 2 cannot be explained by a failure of
the induction’s base case. They satisfy

inf (bx + h(x)) = 10000 > e
xX>Xx

and
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16. Base Case of the Induction

inf (bx + h(x)) = 9900 > e,
xX>Xxq

respectively (for their choices of b, x, and h).
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17. Example of Akra-Bazzi Solution Unbounded on (xy, xo + 1)

In this section, we define a divide-and-conquer recurrence of the form

T'(x) = 1, for x € [1, x,]
X) = T(bx + h(x)) + 1, for x > x,

that satisfies the hypothesis of Theorem 2 with x, = 10000 and p = 0. As we shall see,
the recurrence is finitely recursive, so Lemma 8.2 implies the existence of a unique
solution T. Theorem 2 of [Le] predicts that

T(x) = 0(logx).

We will show that the prediction is correct, but T is unbounded above on the bounded
interval (xg, X, + 1). In the context of our recurrence, the claimed proof of Theorem 2
asserts the existence of a positive real number ¢, that satisfies

1
T(x) <cq (1 — log/? x) (1+logx)

for all x > x, where € > 0 satisfies conditions 2 and 4 of Theorem 2. The assertion
implies ¢ (1 + log(x, + 1)) is an upper bound for T on (x,, x, + 1), which is a
contradiction. Therefore, the predicted cg does not exist, and the inductive hypothesis is
unsatisfied by this example. However, there is no failure of the restricted form of the
base case of the induction as described in Section 16. The failure is with the inductive
step.

Letxy, b, Y, d, 7, &, and p be as in Section 15. Define s: (xy, ©) — [1, ) by
r(x), for x € (xq, xo + 1]
s(x) = {min(bx, x,), forx € (xo + 1, (xg + 1)/b]
bx, forx > (xo +1)/b.

As in Section 15, define a constant function g: [b, @) — R by g(x) = 1. Define
h:[1,) - R by
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17. Example of Akra-Bazzi Solution Unbounded on (x,, x, + 1)

_ 0, for x € [1,x,]
hx) = {s(x) — bx, for x > x,.

Observe that
bx + h(x) = s(x) € [1,x)

for all x > x,. We claim the divide-and-conquer recurrence

1, for x € [1, x,]

) = {T(bx + h(x)) + g(x), for x > x,,

ie.,

1, for x € [1,x,]

T =
(x) {T(s(x)) +1, for x > x,,

satisfies the hypothesis of Theorem 2. The base case is certainly ©(1) as required. The
recurrence above is derived from the recurrence in Section 15 and has the same Akra-
Bazzi exponent, p = 0. Satisfaction of conditions 1 and 4 of Theorem 2 is inherited from
the recurrence in Section 15.

Observe that
[bx + h(x),x] = [s(x),x] € [1,0) c [b, )
for all x > x,, and
[bx + h(x), x] = [bx,x] < [b, )
for all x € [1,x,], so
[bx + h(x),x] c [b,®) = domain(g)

for all x = 1. Since g is a constant function, we conclude that condition 3 of Theorem 2
is satisfied.

Satisfaction of condition 2 for x € [x,, x, + 1] is also inherited from the recurrence in
Section 15. Since h(x) = 0 when x € (xo + 1,xy/b] or x > (x, + 1) /b, we need only
verify condition 2 for all

x € (xo/b, (xy + 1)/b].
For all such x, we also have

x € (xg+1,(xo+1)/b],
SO

s(x) = min(bx, xy) = xq
and

|h(x)| = bx — x5 < 1.
Define L: (1,0) — R by
t
L(t) - log1+£ t ’

so the derivative of L is

logt—1—¢
L(t) =—F/———
(t) 10g2+£ t !
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17. Example of Akra-Bazzi Solution Unbounded on (x,, x, + 1)

which is positive on (e'*#, ). By definition of &, we have

log 100
elte = ploglog10000 ~ 7.96,

so L is increasing on (8, o). Recall from Section 15 that log!*¢ x, = 100, so

X
L(x,) = ﬁ =100,

which implies
L(x) > 100
for all x > x,. Recall that |h(x)| < 1 for all
x € (xo/b, (xo +1)/b],
so |h(x)| < L(x) for all such x. We conclude that condition 2 of Leighton’s Theorem 2
is satisfied, which implies the entire hypothesis of Theorem 2 is satisfied. As previously
mentioned, Theorem 2 predicts T(x) = 0(log x).
Define w: (xq + 1,0) —» Z* by
w(x) = ceiling(logl/b(x/(xo + 1))).
Define d*: [1,0) - N by

d(x), forx € [1,x, + 1]
w(x), forx > xy + 1,

@@ =|

sod*(x) = 0 for all x € [1,x,]. Forall x € (xq,xy, + 1], we have
r(x) € (bxy,x) c [1,x + 1],
" d*(x) =d(x) =d(r(x)) + 1 = d*(r(x)) + 1 = d*(s(x)) + 1.
Ifx € (xg + 1, (xq + 1)/b], then s(x) € [1, x,] and
(@) =w@) =1=d(s(®) +1=d*(s(x)) + 1.
Ifx > (x, + 1)/b, then
s(x) =bx >xy+1

and

d*(x) =wlx) =wx)+1= w(s(x)) +1= d*(s(x)) + 1.

We conclude that d* satisfies the recurrence
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17. Example of Akra-Bazzi Solution Unbounded on (x,, x, + 1)

4 () = 0, for x € [1, x,]
() = d*(s(x)) + 1, for x > x,.

The recurrence satisfied by d* is finitely recursive because range(d*) € N (indeed, a
simple argument shows equality), so d* is its unique solution by Lemma 8.2. Therefore,
d*(x) is the depth of recursion (for the recurrence satisfied by T) at x for all x € [1, o).
In particular, w(x) is the depth of recursion at x for all x > x, + 1. Observe that d* is
positive on (x,, ).

The function d* is integer-valued, so our main recurrence is finitely recursive and
therefore has a unique solution, T, by Lemma 8.2. A simple inductive argument on
d*(x) shows that T(x) = d*(x) + 1 for all x € [1, ). Therefore, T(x) = w(x) + 1 for
all x > xy + 1. For all such x, we have

—915.43

logx — log(x, + 1)) log x
|

w(x) = ce111ng( log b] log D]

because 0 < b < 1 and

log(x, + 1
loglxo +1) 916.431 > 916.43,
llog b
SO
log x
< .
) < Tog bl

(The sharper upper bound for w(x) will be used in Section 18.) If x > (x, + 1)? (so also
x> xo + 1), thenlog(x, + 1) < (logx)/2, so

log x log x
. S roili > .
(x) > w(x) = ceiling <2|1ogb|) ~ 2|logb]
Therefore,
log x log x
T
2|log b| (0 < |log b|

for all x > (x, + 1)2. We conclude that T(x) = @(log x), as predicted by Theorem 2.
However, d is unbounded on Y, which is contained in (x,, x, + 1]. The functions d and
d* agree on Y, so d* is unbounded on Y, which implies T is unbounded on Y. Therefore,
T is unbounded on (x,, x, + 1], which implies T is unbounded on (x,, x, + 1) as
claimed. The appropriately restricted form of the base case of the induction (as described
in Section 16) is satisfied because

xi;le (bx + h(x)) = x1>nxf (s(x)) = inf 1](r(x)) =9900 > e.

XE(xg,Xo+
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18. Example of Akra-Bazzi Solution With
infT(x) = 0on (xq,xy + 1)

Let xy, b, Y, d, r, and € be as in Sections 15 and 17, and let s, h, w, and d* be as in
Section 17. Define a = b, i.e., a = 99/100 and let g: [b, ) — R be identically zero.
We will show that the divide-and-conquer recurrence

1, for x € [1, x,]
T(x) =
aT(s(x)), for x > x,
satisfies the hypothesis of Theorem 2 of [Le] withk = 1,a, = a, b, = b, h; = h,
p = —1, and our choices of x,, g, and &. Observe that a;b? = aa™! = 1 and the base
case of the recurrence is ©(1) as required.

The recurrence above differs from the recurrence in Section 17 only in our choices of a;
and g. In particular, s(x) = bx + h(x) € [1,x) for all x > x,.

Observe that a > 0 as required by condition 1 of Theorem 2. The function g is non-
negative and satisfies Leighton’s polynomial-growth condition relative to {b} with

c; = ¢, = 1. Satisfaction of the other requirements of condition 1 is inherited from the
recurrence in Section 17. Satisfaction of conditions 2, 4(c), and 4(d) is also inherited.

The recurrence of Section 17 has Akra-Bazzi exponent zero and satisfies conditions 4(a)
and 4(b). Since b -log!*¢ x > 1 for all x > x,, we conclude from p = —1 that the
recurrence currently under consideration also satisfies conditions 4(a) and 4(b).

Containment of [bx + h(x), x] in [b, ) for all x > 1 is inherited from the recurrence in
Section 17. Since g is constant and [b, ) = domain(g), condition 3 of Theorem 2 is
satisfied with ¢; = ¢, = 1. Therefore, the recurrence satisfies the hypothesis of
Leighton’s Theorem 2.

Our recurrence inherits the following properties from the recurrence in Section 17: d*(x)
is the depth of recursion at x for all x € [1, ), and our recurrence is finitely recursive.
Lemma 8.2 implies the recurrence has a unique solution T. Theorem 2 predicts that

T(x) =0(1/x).
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18. Example of Akra-Bazzi Solution With infT'(x) = 0 on (xy, x5 + 1)

An easy inductive argument on d*(x) shows that
T(x) = a? @ = p&'®)
for all x € [1,00). In particular, T is a positive function.

Observe that logb < 0 and log(1/b) = |log b| because 0 < b < 1. Recall from Section
17 that when x > x4 + 1, we have

e log x
d*(x) =w(x) = celllng(logl/b(x/(xo + 1))) < log b] —915.43,
SO
log x (log b)(log x)
T(x) > bllogbl 1> — p-91543, Tloghl  ~ 9900.88 - e~108* > 99xoo’
logx log(xy+1
4" (x) > gx g(xo ),

|log b| |log b|

and

(log b)(log x) —(log b)(log(xo+1))
T(x) < (e llog bl )(e MToghl ) _Xot 1 _ 10001.
X X

In particular,

T(x) =0(1/x)

as predicted by Theorem 2. Define

L= inf  T(x)
XE(xg,xg+1)
and
M = inf  T(x).
X€E(xg,xg+1]

Recall from Section 15 that Y < (x,, x, + 1] and recall from Section 17 that
supd*(Y) = oo, so
M < inf T(x) = inf a? @ = 0.
XEY

X€EY

Positivity of T implies M = 0. Therefore, M = 0. Then

min(L,T(xo + 1)) =M =0
because
(xg,x0 + 1] = (xg,x0 + 1) U {xo + 1}.
Positivity of T implies
T(x,+1) >0,
soL =0.
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18. Example of Akra-Bazzi Solution With infT'(x) = 0 on (xy, x5 + 1)

In the context of our recurrence, the claimed proof of Theorem 2 asserts the existence of
a positive real number cg that satisfies

is a positive lower bound for T on (X, x, + 1) in contradiction to L = 0. Therefore, the
predicted cs does not exist.

The fault lies with the inductive step of Leighton’s proof of Theorem 2. The property

inf (bx + h(x)) > e
x>x¢

is inherited from the recurrence in Section 17, so the appropriately restricted form of the
base case is satisfied as described in Section 16.
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19. Problematic and Ill Posed Recurrences

We demonstrated in Sections 13-15 that Theorem 2 of [Le] is false regardless of whether
recursion is finite. Later in this section, we show that Lemma 2 of [Le] is also false.
Recall that Theorem 2 is applicable to recurrences of the form

f(x), for x € [1, x,]
K
TG = Z a;T(bix + hi(x)) + g(x), for x > x,

i=1
where k is any positive integer and

Xg, A1,y -y Ak, bll ey bk,f, 9, hl' ey hk

satisfy various conditions. In particular, x, > 1, the base case f:[1,x,] = R is 0(1),
and g i1s a non-negative function satisfying Leighton’s polynomial-growth condition
relative to {bq, ..., by }. When k = 1, we typically use the shorthand notation a, b, and h
for a;, by, and h, respectively.

Let
R = (D)II al) "'1ak1 blr "')bk!flglll hlll’ 'hkll)

where D = [1,) and I = (xy, ®). The hypothesis of Theorem 2 is apparently intended
to imply that R satisfies our definition of a divide-and-conquer recurrence. (This is
evident from the claimed proof.) The first eight (of nine) conditions for a semi-divide-
and-conquer recurrence are indeed consequences of the hypothesis of Theorem 2. The
ninth condition is b;x + h;(x) € D, i.e., b;x + h;(x) = 1 (in the context of [Le]), for all
x €landalli € {1, ..., k}. Unfortunately, satisfaction of that condition is not guaranteed
by the hypothesis of Theorem 2, which is also the hypothesis of Lemma 2. A
counterexample is provided later in this section.

R is a divide-and-conquer recurrence if it is a semi-divide-and-conquer recurrence that
satisfies b;x + h;(x) < x forall x € [ and all i € {1, ..., k}, i.e.,
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19. Problematic and Ill Posed Recurrences

bl-x + hi(X) € [1,.X')

for all such x and i. The hypothesis of Theorem 2 and Lemma 2 does not imply that
b;x + h;(x) < x. In particular, the hypothesis is satisfied by some mock divide-and-
conquer recurrences such as those recurrences in Section 13 with x, € [686,10000).

The claimed proof of Theorem 2 fails largely because of the aforementioned issues and
the absence of any guarantee that depth of recursion is bounded on each bounded subset
of the domain. By Corollary 9.5, the bounded depth condition for a semi-divide-and-
conquer recurrence implies the existence of a unique solution, which is locally ©(1)
when the recurrence is proper and the incremental cost has polynomial growth. The
circumstances described in Sections 17 and 18 are thereby avoided. As we shall see,
there are additional reasons to require bounded depth of recursion on bounded sets.

The proof of Lemma 2 also fails partly because of the same omission of any guarantee
that
bl-x + hi(X) € [1,.X')

forall x > xy and all i € {1, ..., k}. We will show that Lemma 2 remains false even with
the addition of such a guarantee (and an integrability condition). Our obvious
replacement in Section 22 for Lemma 2 is applicable to divide-and-conquer recurrences
that satisfy the strong ratio condition (and have incremental costs with tame extensions).
Theorem 2 relies on the false Lemma 2 but does not assume the existence of

0<as<spf<l1
such that
ax < b;x + h;(x) < Bx

forall x > xyand alli € {1, ..., k}.

Our most fundamental replacement in Sections 20 for Leighton’s Theorem 2 is a
statement about locally ©(1) solutions of mildly constrained semi-divide-and-conquer
recurrences. The recurrences need not satisfy either the bounded depth or ratio
conditions. Furthermore, they need not be proper, i.e., our replacement is applicable to
some mock divide-and-conquer recurrence. However, each locally ©(1) solution is also
the solution of an auxiliary divide-and-conquer recurrence that satisfies the bounded
depth and strong ratio conditions and some conditions analogous to the hypothesis of
Leighton’s Theorem 2. The auxiliary recurrence is obtained by a suitable extension of
the base case. See Section 20 for more information.

Failure of inductive step and partition of the domain. The claimed proof of
Leighton’s Theorem 2 uses a sequence Iy, I1, I, ... of disjoint, bounded, non-empty

intervals with I, = [1, x,] and
e = )1,
j=0
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19. Problematic and Ill Posed Recurrences

S0 {Ij 1] € N} is a partition of [1, ©). Furthermore, sup I; = inf I;;, forall j € N. The
definition of the partition is contained in the proof of Theorem 1 of [Le]. In this section,
we ignore the precise definition of the intervals and consider only their properties
described above. Leighton’s argument uses induction on the index of the interval
containing x. The inductive step implicitly assumes b;x + h;(x) maps I,, into

n-1
s
j=0

foralln € Z*tand all i € {1, ..., k}. Assuming the hypothesis of Theorem 2, the existence
of such a partition requires R to be a divide-and-conquer recurrence with depth of
recursion at most n on the interval I,,. If S is any bounded subset of [1, o), then sup S is
contained in I; for some non-negative integer d, so

d
s<|Jy

j=0

and the depth of recursion is at most d on S. Therefore, the bounded depth condition
must be satisfied for the inductive step to possibly be valid.

In Section 13, we described a family of semi-divide-and-conquer recurrences
(parameterized by a choice of x, € [686,10000]) that satisfy the hypothesis of
Leighton’s Theorem 2 although each member of the family has uncountably many
solutions that do not satisfy the proposition’s conclusion. Those recurrences satisfy

bx + h(x) > 10000

for all x > 10000. When x, = 10000, there is no possible choice of I; for which
bx + h(x) maps I, into I,. When x, € [686,10000), Lemma 13.1 implies

bx + h(x) = x

for all x € (x,, 10000] (with equality if and only if x = 10000); in particular, the
recurrence is a mock divide-and-conquer recurrence. The inductive step fails for the
entire family of recurrences in Section 13. All of them are infinitely recursive, so none of
them satisfy the bounded depth condition.

The finitely recursive counterexample in Section 15 to Leighton’s Theorem 2 is a divide-
and-conquer recurrence that violates the bounded depth condition. For example, depth of
recursion is unbounded on (x,, x, + 1). There is no partition of the domain with the
claimed properties, and the inductive step fails.

The divide-and-conquer recurrences described in Sections 17 and 18 also violate the
bounded depth condition and lack partitions of their domains with the claimed properties.

211



19. Problematic and Ill Posed Recurrences

Later in this section, we shall exhibit an ill posed recurrence that satisfies the hypothesis
of Theorem 2 but has the property that bx + h(x) < 1 for some x > x,. There is no
partition with the assumed properties, and the inductive step of the proof fails again.

Violation of the strong ratio condition and failure of Lemma 2. Leighton’s Lemma 2
asserts the existence of positive real numbers c3 and ¢, with the property that

X
g@)
c3g(x) < xP ’L.Hh.(x) xS du < c,g(x)

forallx > 1andalli € {1, ..., k}. Although the Lemma does not define p, Leighton
obviously intends for p to be the same real number that appears in the statement of
Theorem 2, so that

(libg9 =1.

-

=1

The claimed proof of Theorem 2 uses Lemma 2 with x > x, but does not use Lemma 2
for x € [1,x,]. Therefore, we shall confine our attention to x > x,.

Now consider any recurrence with x, € [686,10000) in the family of counterexamples
in Section 13 to Theorem 2. The function g for the recurrence is positive. As before,
Lemma 13.1 implies

bx + h(x) = x

for all x € (x,, 10000], i.e., the lower limit of integration is greater than or equal to the
upper limit of integration. The integrand in Lemma 2 is positive for all such x, so the
oriented integral is non-positive, which implies c;g(x) < 0 in contradiction to the
positivity of ¢; and g. (When x = 10000, the upper and lower limits are the same and
the integral is zero. The upper and lower limits are distinct when x # 10000.) The
recurrence is a counterexample to Lemma 2, which is false.

The recurrence in Section 13 with x, = 10000 and the finitely recursive counterexample
in Section 15 to Theorem 2 satisfy the conditions of Theorem 2 and are divide-and-
conquer recurrences with

bx + h(x) € [1,x)
for all x > x,. They share the properties that g(x) = 1 for all x € domain(g).

We claim that Lemma 2 is false for both recurrences. Lemmas 13.1(3), 13.22, and 15.1
imply that each recurrence satisfies

inf (x — (bx + h(x))) = 0.

xXo<bx+h(x)<x<xg+1

Pick either recurrence and define
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19. Problematic and Ill Posed Recurrences

_ - max(x?, (xo + 1)P)
"~ min(xP*L, (xo + 1P’

so U > 0. There exists z € (x, Xo + 1) such that

Xg<bz+h(z)<z
and

c
zZ— (bz + h(z)) < 33
According to Lemma 2:

Z

du<U- (z — (bz + h(z))) < cs.

p+1

c3 = 39(2) < ij
bz+h(z) Y

We obtain the contradiction ¢; < c¢3, which demonstrates that Lemma 2 is false for both
of the recurrences.

The claimed proof of Lemma 2 consists of the following statement: “The proof is
identical to that for Lemma 1 except that we use constraint 3 above in place of the
polynomial-growth condition of Section 2.”

An obvious translation of the claimed proof of Lemma 2 into a proof of a true version of
the lemma for x > x, includes the requirement that
)) <1,

h; h.
min | inf (bi + l(x)>> >0 and max (sup (bi + IJ(CX)

1<i<k <x>x0 X 1sisk \ x>x,

h.: h.
inf (bi + l(x)> >0 and sup (bi + l(x)> <1

X>Xo X x>xg X

1.€.

foralli € {1, ..., k}. For a semi-divide-and-conquer recurrence with recursion interval
(x¢, ), the upper bound above is equivalent to the ratio condition (which implies the
recurrence is proper) and the combination of inequalities above is equivalent to the strong
ratio condition. As previously explained, the counterexamples in Section 13 and 15 are
semi-divide-and-conquer recurrences that violate the bounded depth condition. (The
example in Section 15 is proper as is the recurrence in Section 13 when x, = 1000).
Lemma 9.6 implies they also violate the ratio condition.

Depending on interpretation, the existence of a positive lower bound might be considered
a consequence of the hypothesis of Leighton’s Theorem 2 except perhaps when p = 0.

Theorem 2 assumes 0 < b; < 1and xq = 1/b; foralli € {1, ..., k}, so x, > 1 and
log x, > 0. Define positive real-valued functions Ay, ..., Ax: [xg, ) = R* by

A;(x) = b;log*é x
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19. Problematic and Ill Posed Recurrences

where € > 0 satisfies condition 4(a) of Theorem 2. Each A; is continuous and increasing.
Furthermore,

lim A;(x) = oo.

X— 00

Suppose A;(x,) < 1 for some j € {1, ..., k}. Then there exists t > x, with 4;(t) = 1.
Observe that
In particular, logt > 0 and

t
log <bjt + logl—”t) > log(bjt) = 0.

Then condition 4(a) implies

-1

1

0P (1 —1 >p> 1+ (1+—1 >>0
- " b.logltetr) = t log&/2 t '
j 108 logé/2 (bjt + logl—*'ft) 08

In particular, 0P must be defined and positive, which is false unless p = 0 and we adopt
Knuth’s convention that 0° = 1. If p # 0 or we consider 0° to be undefined, then

b;log'*¢x, > 1

foralli € {1, ..., k}. If £ also satisfies condition 2 of Theorem 2, then

inf ( b h"(x)>'f<b ! )—b<1 ! )>o
x1>nx0 it x _xglxo L logltex) T Y b; logl+¢ x,

for each index i.

With some small modifications (the technical condition in Section 20) to the inequalities
in the hypothesis of Theorem 2, satisfaction of the strong ratio condition is guaranteed.
See the proof of Lemma 20.9.

Example of range of dependency not contained in domain of recurrence. Consider
the recurrence
T(x) = aT(bx + h(x)) +1
for
x>x,=e+1=~22027,
and
T(x)=1

for 1 < x < x, where b = 1/100, a = b?, and the function h: [1,00) — R is defined by
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19. Problematic and Ill Posed Recurrences

for x > xy, and h(x) = 0 for 1 < x < x,. We claim the hypothesis of Theorem 2 is
satisfied by the recurrence with p = —2, ¢ = 1, and g: R — R defined by g(x) = 1.
Observe that ab? = b2b~2 = 1 as required. Satisfaction of conditions 1, 2, and 3 of
Theorem 2 is immediately obvious. Observe that

log®’? x = \/logx > \/logx, > V10 > 3
for all x > x;, so

and

so conditions 4(c) and 4(d) of Theorem 2 are satisfied. For all such x, we have
log? x > log? x, > 100,

blog'*¢x = blog?x > 100b = 1,
-2

(= srges) = (1 progs) >
blogi*tex) blog? x ’

-2

APTCPRE T U W
blogli*tex) blog? x ’

and
< bxy < bx + r x+ ad <i<x
¢ 0= logltex 100 log2x 50 '
o)
1 <log (bx + logi*e x) < log x.
Then
(1 ! ’ 1+ ! >1+ !
" blogl+e x) £/2 ( x ) loge/2 x
log bx + Tog " x
and
(— !
blog'+e x) 2 ( X ) loge/2x’
log bx + Tog " x
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19. Problematic and Ill Posed Recurrences

so conditions 4(a) and 4(b) are satisfied. Therefore, the hypothesis of Theorem 2 is
satisfied. Define r: (xy, ) — R by

r(x) = bx + h(x),
so 7 is differentiable with derivative

(log x)(log? x — 100) + 200

') = 1001log3 x
Observe that
logx > 10
for all x > x;, so
r'(x) >0

for each such x, i.e., r is increasing on (x,, ). Let

= i
m X_}JrcrolJr(r(x)),
)
Xo el®+1 el® +1

= — ~ 0.002.
log?x 100 log?(e'® + 1)
0

m = bx, —

Furthermore,

)ll_)rglo(r(x)) = (lim (b — loglz x)) (lim (x)) = b0 = oo,

X—00

Therefore, the range of the continuous, increasing function 7 is the interval (m, o),
which is not contained in the domain, [1, ), of T. We conclude that the recurrence has
no solution. The recurrence fulfills promises made earlier in this section and in Sections
0, 7, and 16 including

inf(r(x)) <1 and r(y) =1

X>Xq

for some y > x,. Lett € (m,1),s0 1,t € range(r). Observe that t € (0,1), so logt is
a negative real number. Leighton’s inductive argument (see Section 16) requires that

1 d 1
loge/2 1 an loge/2 ¢

are real. Of course, neither expression represents a real number.
Nonexistence of a solution is illustrated by the C# code on the next page. The method

Test of the Example class causes an ArgumentOutOfRangeException to be thrown
by the method T. (We ignore the issue of floating-point rounding.)
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19. Problematic and Ill Posed Recurrences

public static class Example

{

const double a = 0.0001;
const double b = 0.01;
static readonly double x0 = Math.Exp(10.0) + 1;

public static double Test()

{
return T(x0 + 1);
}
static double T(double x)
{
if (x > x0)
{
return a * T(b * x + h(x)) + 1;
}
else if (x >= 1)
{
return 1;
}
else
{
throw new ArgumentOutOfRangeException();
}
}
static double h(double x)
{
if (x > x0)
{
double logX = Math.Log(x);
return -x / (logX * logX);
}
else if (x >= 1)
{
return 0;
}
else
{
throw new ArgumentOutOfRangeException();
}
}
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20. Replacements for Leighton’s Theorem 2

Our main results are Theorems 20.11 and 21.2 along with Corollaries 20.12 and 20.13.
Together they form a convenient replacement for the false Theorem 2 of [Le]. They are
applicable to certain recurrences with sufficiently linear dependencies:

Definition. A semi-divide-and-conquer recurrence has low noise if either the recursion
set is bounded, or for each noise term h there exists ¢ > 1 such that

Ih()l =0 (log‘-‘ x)'

The Big-O relationship in the definition of low noise requires the recursion set [ to be
unbounded above. By definition of a semi-divide-and-conquer recurrence, [ has a
positive lower bound. Thus I is bounded if and only if I has a finite upper bound, i.e., I
is unbounded if and only if I is unbounded above. Of course, the expression x/log® x
represents a positive real number for all x € I N (1, o).

The definition above refers to |h(x)| instead of h(x) because our definition of Big-O
notation requires the related functions to be asymptotically non-negative. Our
interpretation of the asymptotic relationship for |h(x)| is compatible with other sources
(such as [Kn]) that have no such requirement.

Of course, there exists a uniform choice for the exponent ¢ in the definition of low noise
when the recursion set is unbounded: If a semi-divide-and-conquer recurrence

(D,I, a, ..., g, bl’ ...,bk,f,g, h’ll ""h’k)

with an unbounded recursion set has low noise, then there exist ¢4, ..., ¢ > 1 such that

el =0 (=)
ogtix
foralli € {1,...,k}. Then
X
IR GOl = 0 (logc x)
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20. Replacements for Leighton’s Theorem 2

for all such i where ¢ = min(c;y, ..., ¢;). Observe that ¢ > 1 and

. hi(x)
lim —= =

X—00 X

0

foralli € {1, ..., k}. As explained in Section 7, each dependency of such a recurrence
has a unique representation of the form bx + h(x) that is consistent with low noise.

The following definition and lemma provide a characterization of low noise that is more
in the spirit of [Le]. Section 30 discusses an example in [Le] that demonstrates the
motivation for ¢ > 1 in the definition of low noise and € > 0 in the definition below.

Definition. A semi-divide-and-conquer recurrence with recursion set I satisfies
Leighton’s noise condition on ] relative to a positive number ¢ if ] is a subset of
I N (1,) and

X
<
GOl < oy

for each noise term h and all x € J.

1+¢

The requirement above that ] € I N (1, o) guarantees that log x and x/(log**¢ x) are

defined as positive real numbers for all x € J.

Lemma 20.1. A semi-divide-and-conquer recurrence R with unbounded recursion set [
has low noise if and only if there exists € > 0 and a non-empty upper subset J of I such
that R satisfies Leighton’s noise condition on J relative to ¢.

Proof. 1f R satisfies Leighton’s noise condition on some non-empty upper subset J of [
relative to some € > 0, then
h(x)| £ ——
IO < oy

for each noise term h and all x € J. We conclude from sup [ = oo that

()| = 0 (log%)

for each such h, i.e., R has low noise.

We now prove the converse. Suppose R has low noise with noise terms hg, ..., hy. Since
I is unbounded, there exists ¢ > 1 along with M4, ..., M; € R* and non-empty upper
subsets Hy, ..., H; of I N (1, 00) such that

X
|h; ()| < Milog—cx

forall x € H; and alli € {1, ..., k}.

219



20. Replacements for Leighton’s Theorem 2

We claim H; N H; € {H;, H;} forall i,j € {1, ...,k}: IfH; — H; # @ and H; — H; # @,
there existy € H; — H;j and z € H; — H;, so y > z >y, which is a contradiction. Either
H; —H; =@ and H; N H; = H;, or H; — H; = @ and H; N H; = H;. The claim follows.

Define

k
H = ﬂHl

i=1

An obvious inductive argument implies H € {Hy, ..., H}. In particular, H is a non-empty
upper subset of I N (1, ), which is an upper subset of I. Therefore, H is an upper subset
of [ and sup H = sup ] = oo. Observe that

|hi()| < U

log€ x

forall x € H and all i € {1, ..., k} where U = max{M,, ..., M} }. Definee = (c —1)/2,
so € > 0 and

by ()] < -

logé x . logi*é x
for all x € H and each index i. Since sup H = oo and

) U
im =
x- logé x

there exists a non-empty upper subset / of H such that
X
|h;(x)] < Togi*e x

forall x € Jand alli € {1, ...,k}. Of course,] € H € I N (1,). Therefore, R satisfies
Leighton’s noise condition on ] relative to €. Furthermore, J is an upper subset of |
because J is an upper subset of H, which is an upper subset of /. O

We are primarily interested in admissible recurrences:
Definition. An admissible recurrence is a semi-divide-and-conquer recurrence with low

noise whose incremental cost has a tame extension.

By definition, the incremental cost’s domain (i.e., the recursion set) is positive and non-
empty; the domain of a tame function is a non-empty, positive interval. The incremental
cost of an admissible recurrence has polynomial growth by Lemma 2.2(2). Similarly,
Lemma 10.1(2) implies the incremental cost of a semi-divide-and-conquer recurrence has
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20. Replacements for Leighton’s Theorem 2

a tame extension if and only if there is such an extension to the minimum interval
containing the recursion set. The incremental cost of a semi-divide-and-conquer
recurrence with an interval for its recursion set has a tame extension if and only if the
incremental cost is tame.

The requirements for an admissible recurrence are analogous to condition (2) and most of
condition (1) of Theorem 2 in [Le]. Later in this section, we define the fechnical
condition, which is analogous to condition (4) and part of condition (1). We have no use
for condition (3). Our closest analog of the hypothesis of Theorem 2 is the modified
Leighton hypothesis, which is also defined later in this section.

Definition. Let I be the recursion set of a semi-divide-and-conquer recurrence and
suppose g is a tame extension of the incremental cost (so domain(g) is an interval
containing I). The Akra-Bazzi estimate for the recurrence relative to g is the function

A:1 - R* defined by
X
g)
A(x) = xP (1 + j il du)

X0

where x, = inf[ and p is the Akra-Bazzi exponent (defined at the end of Section 11). If
X, € domain(g) (which implies x, = inf domain(g)), the integral above is interpreted

as the improper integral
X
u
lim j 9¢ )du
t

toxd ub+1 '

Let g, x4, and p be as in the definition above. Corollary 10.3 implies the function

u ~ g(u)/uP*! on domain(g) is tame (in particular, it is locally Riemann integrable).
By definition of a semi-divide-and-conquer recurrence, X, is positive. We conclude from
Lemma 10.5 that the Akra-Bazzi integral converges when it is improper. Lemma 10.1(1)
(or Lemma 2.2(1)) implies the integrand is non-negative, so the Akra-Bazzi estimate is
indeed a positive function.

Definition. Suppose g is a tame extension of the incremental cost of a semi-divide-and-
conquer recurrence with recursion set I. Let A be the Akra-Bazzi estimate for the
recurrence relative to g. A solution T of the recurrence satisfies the strong Akra-Bazzi
condition (relative to the recurrence and g) if there exist positive real numbers 4, and 4,
such that

MAMx) <T(x) < 1,A(x)

for all x in I. A solution T satisfies the weak Akra-Bazzi condition (relative to the
recurrence and g) if I is unbounded and

T(x) = 0(A(x)).
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20. Replacements for Leighton’s Theorem 2

The weak Akra-Bazzi condition is similar to the conclusion of Theorem 2 of [Le] (the
lower limit of integration differs). We are more interested in the strong Akra-Bazzi
condition, which is a weaker version of the inductive hypothesis in the claimed proof of
Theorem 2 in [Le]. Of course, the strong Akra-Bazzi condition implies the weak Akra-
Bazzi condition when the recursion set is unbounded.

Flexibility with lower limit of integration. Let R be a semi-divide-and-conquer
recurrence with recursion set I and Akra-Bazzi exponent p. Further suppose T is a
solution of R and g is a tame extension of the incremental cost of R. Let

¢ € [infdomain(g),infI] — {03},

so (¢, x] € domain(g) for all x € I. Define B:I - R* by

B(x) = xP (1 + j"iﬁzﬁ du).

As before: The integrand above (defined on domain(g)) is tame by Corollary 10.3 (in
particular, it is locally Riemann integrable). It is non-negative by Lemma 10.1(1) (or
Lemma 2.2(1)), so B is a positive function as claimed. If ¢ € domain(g), the integral
above is improper and Lemma 10.5 guarantees convergence.

Lemma 10.8 implies T satisfies the strong Akra-Bazzi condition relative to R and g if
and only if there exist positive real numbers @ and £ such that

aB(x) < T(x) < BB(x)

for all x € I. Similarly, T satisfies the weak Akra-Bazzi condition relative to R and g if
and only if T(x) = G)(B (x)).

We make some trivial observations before proceeding to deeper water:

Lemma 20.2. Let R be a semi-divide-and-conquer recurrence whose incremental cost
has a tame extension g. The Akra-Bazzi estimate for R relative to g is locally @(1).

Proof. Let A be the Akra-Bazzi estimate for R relative to g, and let x, = inf[ where [ is
the recursion set of R. By definition of a semi-divide-and-conquer recurrence, x; is
positive. Let ] = domain(g). Positivity of x, and containment of I in the interval |
imply x, € J U ({inf/} — {0}). Lemma 10.6 implies the function

X
g(w)
X |—>xp<1+j up+1du>

Xo

on J N [x,, ) is locally ©(1), so its restriction, 4, to I is also locally O(1). O
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Lemma 20.3. Suppose T is a solution of a semi-divide-and-conquer recurrence R whose
incremental cost has a tame extension g. Let A be the Akra-Bazzi estimate for R relative
to g, and let J be a subset of the recursion set of R. If there exist 1;,4, € R* such that

llA(X) < T(X) < le(x)
for all x € ], then the restriction of T to J is locally O(1).

Proof. Let W be a bounded subset of /, so W is contained in the recursion set. Lemma
20.2 implies A is locally ©(1). There exist ¢;, ¢, € R such that

c; <Alx) <c,
for all x € W. Then
Ay < Tx) < A0,

for all such x, so T|y, = ©(1). Therefore, T|; is locally ©(1). O

Corollary 20.4. Let R be a semi-divide-and-conquer recurrence whose incremental cost
has a tame extension g. If a solution T of R satisfies the strong Akra-Bazzi condition
relative to R and g, then T is locally O(1).

Proof. Lemma 20.3 implies the restriction of T to the recursion set of R is locally ©(1).
Lemma 9.1 implies T is locally ©(1). |

Corollary 20.5. Let R be a semi-divide-and-conquer recurrence whose incremental cost
has a tame extension g. If a solution T of R satisfies the weak Akra-Bazzi condition
relative to R and g, then the restriction of T to H is locally ©(1) for some non-empty
upper subset H of the recursion set of R.

Proof. Let I be the recursion set of R. By definition of the weak Akra-Bazzi condition, /
is unbounded and

T(x) = 0(A(x))

where A is the Akra-Bazzi estimate for R relative to g. There exist 1;,1, € R* and a
non-empty upper subset H of I such that

AlA(X) < T(X) < le(x)
for all x € H. Lemma 20.3 implies the restriction of T to H is locally ©(1). O
Weak and strong Akra-Bazzi conditions are not equivalent. Although the strong
Akra-Bazzi condition implies the weak Akra-Bazzi condition when the recursion set is
unbounded, the converse is false. Sections 17 and 18 contain examples of proper, finitely

recursive, admissible recurrences (with unbounded recursion sets) whose unique
solutions satisfy the weak Akra-Bazzi condition but are not ©(1) on (10000,10001).
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The solutions are therefore not locally ©(1). They violate the strong Akra-Bazzi
condition by Corollary 20.4.

Some admissible recurrences violate both Akra-Bazzi conditions. Section 15
describes a proper, finitely recursive, admissible recurrence with an unbounded recursion
set whose unique solution violates both Akra-Bazzi conditions.

Dangerous bend. In the presence of infinite recursion, an admissible recurrence may
have a solution that satisfies the strong Akra-Bazzi condition or the weak Akra-Bazzi
condition, while having other solutions that satisfy neither. Section 13 defines a family
of infinitely recursive admissible recurrences parameterized by a choice of x;, in the
interval [686,10000] and a ©(1) base case f:[1,x,] = R. (The only proper recurrences
are the ones with x, = 10000.) The recursion set is (x, ©). Now consider any
recurrence in the family. The constant function g(x) = 1 on (0, ) is a tame extension
of the incremental cost. (Here the domain of g is chosen for consistency of notation with
Section 13.) The Akra-Bazzi estimate for the recurrence relative to g is the function

A: (xg,0) — R defined by

1 x 1-
Alx) = —(1 +] du) =1+ xo,
x x

X

SO
Alx) < 1.
The function A has derivative
xXo—1
X2

A(x) = >0,

so A (and its obvious continuous extension to [x,, ©)) is an increasing function, which
implies
1—x 1
Ax)>1+ 0=
Xo Xo

The constant function x = 100 on (x,, ) can be extended to a solution T of the
recurrence and satisfies
100-A(x) < T(x) < 100x, - A(x)

for all x > x,. Therefore, T satisfies the strong Akra-Bazzi condition relative to the
recurrence and g. As shown in Section 13, T is not the unique solution of the recurrence.
Infinitely many other solutions are unbounded on every non-empty open subset of the
recursion interval and therefore violate both Akra-Bazzi conditions by Corollaries 20.4
and 20.5.

Some recurrences in the family have range(f) = {100}. For such a recurrence, the
solution T described above is constant.

Criticality of base case’s domain. A much different family of admissible recurrences is
obtained from the family in Section 13 by specifying that x, > 10000. The resulting
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recurrences satisfy the ratio condition (in particular, they are proper). Lemma 9.6 implies
each such recurrence satisfies the bounded depth condition (and is therefore finitely
recursive) and has a unique solution. In particular, each recurrence in the family with the
constant base case x — 100 on [1, x,] has the constant function x +~ 100 on [1, ®) as its
unique solution. Theorem 2 of [Le] contains the phrase “x, is chosen to be a large
enough constant”. As we have seen, a recurrence can be dramatically altered by
modification of the base case.

Lemma 20.6. If T is a locally ©(1) solution of an admissible recurrence
R = (D, I, aq, ..., ak, bl’ ey bk,f,g, h‘ll ey h’k)'

and J is a non-empty upper subset of I, then

S = (D,],al, ""ak'bl’""bk’TlD—]’glj’hll]’""h’klj)

is also an admissible recurrence with T as a solution. Furthermore, if g* is a tame
extension of g, then T satisfies the strong Akra-Bazzi condition relative to R and g™ if
and only if T satisfies the strong Akra-Bazzi condition relative to S and g*.

Proof. Lemma 9.7 implies S is a semi-divide-and-conquer recurrence with T as a
solution. By definition of an admissible recurrence, g has a tame extension, which is also
an extension of g|;. If [ is bounded, then J is bounded, which implies S has low noise
and is therefore admissible. If I is unbounded, then J is unbounded and there exists ¢ > 1
such that

Ihi(0)l =0 (logc x)

foralli € {1, ..., k}. Since J is a non-empty upper subset of /,

|hi|](x)| =0 (logc x)

for each index i, which implies S has low noise and is therefore admissible.

Let g* be a tame extension of g. Of course, g* is also an extension of g|;. Let A and B
be the Akra-Bazzi estimates for R and S respectively (relative to g*). Define A*:D — R
and B*: D — R by
. {A(x), forx €1
A* =
T(x), forxeD—1
and
. {B(x), forx €]
B* =
T(x), forx € D —J.

By definition of a semi-divide-and-conquer recurrence, the function f and T|_; are
©(1). Furthermore, infI and inf] are positive. Observe that R and S have the same
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Akra-Bazzi exponents. Lemma 10.9 implies there exists positive real numbers A, and 1,
such that

MA*(x) < B*(x) < 1,A*(x)
forall x € D.

Suppose T satisfies the strong Akra-Bazzi condition relative to R and g*. We will show
that T satisfies the strong Akra-Bazzi condition relative to S and g*. There exist positive
numbers a4, and @, such that

a,A(x) < T(x) < a,A(x)

forall x € I. Since ] € I, we have A(x) = A*(x) for all x € J. For such x, we have

%B(x) - %B*(x) < @, A" (%) = @A) < T(x)

and
T(x) < a,AX) = a,A*(x) < %B*(x) = %B(x).

The quantities @, /A, and a, /A, are positive real numbers, so T satisfies the strong Akra-
Bazzi condition relative to S and g* as claimed.

The converse: Suppose T satisfies the strong Akra-Bazzi condition relative to S and g*.

We will show that T satisfies the strong Akra-Bazzi condition relative to R and g*. There
exist positive real numbers f; and [, such that

B1B(x) < T(x) < B,B(x)
forall x € J. Let L = min{B;, 1} and U = max{f,, 1}. Then
LB*(x) = LB(x) < B;B(x) < T(x) < B,B(x) < UB(x) = UB*(x)

for all x € J, and
LB*(x) < B*(x) =T(x) = B*(x) < UB*(x)

for all x € D — J. Therefore,
LB*(x) < T(x) < UB*(x)
forall x € D. Forall x € I, we have
| AMLA(x) = A{LA*(x) < LB*(x) < T(x)
an

T(x) < UB*(x) < AL,UA*(x) = 1, UA(x).

The quantities A, L and A, U are positive real numbers, so T satisfies the strong Akra-
Bazzi condition relative to R and g* as claimed. O
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The bounded depth and strong ratio conditions and locally ®(1) solutions of
admissible recurrences with unbounded recursion sets. If the admissible recurrence R
of Lemma 20.6 has an unbounded recursion set, then Lemma 9.8 implies there exists a
choice of J such that S satisfies the strong ratio condition. Then Lemma 9.6 implies S
satisfies the bounded depth condition and has T as its unique solution.

An infinitely recursive, proper, admissible recurrence R with a bounded recursion
set and a positive constant solution T (and infinitely many solutions that are not
0(1)) such that the recurrence S of Lemma 20.6 does not satisfy the bounded depth
condition for any choice of J. Let I be the open interval (1,2) and define a bijection
r:1 - I by

r(x)=(x—-1)2%+1,
sor(x) < xforallx € 1. Let

R=(D,I,ab,f,g,h)

where D = [1,2),a=1/2,b € (0,1), f: {1} » {1}, g: 1 - {1/2},and h: ] - R is
defined by h(x) = r(x) — bx. Observe that

bx+h(x)=r(x)e(1,x)=IN(—0o,x) € DN (—x,x)

for all x € I, so R is a (proper) divide-and-conquer recurrence that is infinitely recursive
at each such x. The recurrence R has low noise because the recursion set, I, is bounded.
The incremental cost, g, is its own tame extension. Therefore, R is an admissible
recurrence. The positive, constant function T: D — {1} is a solution of the recurrence,
i.e., T agrees with f on D — I = {1} and satisfies

T(x) = % T(r(x)) +%

for all x € I. Now let | be a non-empty upper subset of I, so J is an interval of positive
length with supJ = 2. (e.g., maybe ] = I.) Define

s =(D,J,a,b,Tlo_; gl hl)).

Lemma 20.6 implies S is an admissible recurrence with T as a solution. (Furthermore, S
is proper by Lemma 9.7.) Let d be the depth-of-recursion function for S. Observe that
r~1(x) € (x,2) c ] forall x € J. By an obvious inductive argument, we conclude that

r"(x) €]
and
d(r‘”(x)) =dx)+n>n

forall x € J and all n € Z*. (The exponent —n refers to composition of functions, not
powers of function values.) Therefore, S does not have bounded depth of recursion on
the bounded interval J. Thus S violates the bounded depth and ratio conditions (see
Lemma 9.6).
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Define an equivalence relation ~ on I by y~z when r™(y) = z for some integer m, so
each equivalence class is countably infinite. Let P be the set of equivalence classes, so P
is a partition of /. By the axiom of choice, there exists a transversal L of ~. Observe that
IL| = |P], so

max(|Ll, [N|) = max(|P|, |N]) = |I| = R|.

We conclude from |N| < |R| that |[L| = |R|. There exist infinitely many bijections
A:L = R. Each such A can be uniquely extended to a solution T; of R. Observe that

R =range(1) € range(T;) € R,

so range(T;) = R. In particular, the solution T is unbounded above and below. The
domain, D, of T; is bounded, so Tj is neither ®(1) nor locally ©(1). Distinct bijections
from L onto R determine distinct solutions of R, so there are infinitely many solutions of
R that are surjections onto R and are neither ©(1) nor locally ©(1).

A finitely recursive, proper admissible recurrence R with a bounded recursion set,
and a positive constant solution T such that the recurrence S of Lemma 20.6 does
not satisfy the bounded depth condition for any choice of J. Define D = [1,3) and
I = [2,3). Define the increasing sequence t, ty, t,, ... by to = 1 and

1
forj > 0. Thent; = 2 and
j—ooo

LetY; = [tj, tj+1) for each non-negative integer j, so Y, = [1,2) = D — I and I is the
disjoint union of Y3, Y5, Y3, ... For each positive integer j, define the bijection
®;:Y; > Y, by

x—t
@) =t + (ﬁ) (t = tj-1).
j+1 ]

Define r:1 - D by r|yj = @, for each positive integer j. Leta = b = 1/2. Define
functions f:D — I — {1} and g: I - {1/2}. Define h:I - R by h(t) = r(t) — bt. The
admissible recurrence R = (D,1,a, b, f, g, h), i.e., the recurrence

1, forx e D —1

T(x) = {%-T(r(x)) +%, forx €1,

is proper and finitely recursive with the unique solution T(x) = 1 forall x € D. Let ] be
any non-empty upper subset of I, and let S be the corresponding admissible recurrence of
Lemma 20.6 with J as its recursion set. Let d be the depth-of-recursion function for S.
Letz € ], so z € Y, for some integer « > 0. Then Y,,,, c J for each integer n > 0.
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Furthermore, d(J) = d(Y,4,,) = d(Y,) + n > d(z) + n > n for each such n.
Therefore, d(J) = . ] is bounded, so the bounded depth condition is violated by S.

Definition. Let k be a positive integer. A (k + 3)-tuple (xg, by, ..., by, 0, €) of real
numbers satisfies the technical condition if

()0< b;<1foralli€({1,..,k},
2) e >0,

(3) x, > ebiforalli € {1, ..., k},
(4) log&/? x, > 2, and

(5) forall x = xgand alli € {1, ..., k},

(a)(l—;)lpl 1+ : >1+——
b; 10g1+8x IOgg/z(bix-’-]ogl%sx) 10g€/2 x’

(b)(1+;)“0I 1- L <1-—1
b; 10g1+8x IOgg/z(bix-’-]ogl%sx) 10g€/2 x

Remarks about the technical condition. We include (2) for convenience although it is
a consequence of (1), (3), and (4). If (xq, by, ..., by, p, €) satisfies the technical condition,
then (y, by, ..., by, p, €) satisfies the technical condition for all y > x,. Parts (1) and (3)
imply x, > e. Leti € {1, ..., k}. Part (3) and positivity of b; (by (1)) imply

1
bl-xo > bl-el/bi > blb— = 1,
i

which is a strict version of the inequality x, = 1/b; assumed by Theorems 1 and 2 of
[Le]. Parts (5a) and (5b) are strict versions of conditions 4(a) and 4(b) of Theorem 2 of
[Le] with p replaced by |p|. Sections 24 and 25 explain the main reason we use |p|. The
replacement of p by |p| in (5a) also combines with (1), (2), (3), and strictness of (5a) to
imply that all admissible recurrences satisfying the modified Leighton hypothesis also
satisfy the ratio condition (see the proof of Lemma 20.9). Part (4) of the technical
condition is a strict version of condition 4(d) of [Le] and implies a strict version of
condition 4(c) of [Le].

As explained in Section 19, parts (1), (2), and (5a) of the technical condition along with

Xo > 1/b; (the bound x, = 1/b; is sufficient) can be construed to imply b; log!*€ x, > 1
if p is nonzero or we follow the convention that 0° is undefined. The technical condition
includes (3) partly to make explicit our intention that b; log!*¢ x, > 1. Parts (1), (2), and

(3) imply
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11+£ 18

b;log*€ x, > b; <b_z) = <b_l) > 1 =1.

All denominators that appear in (5a) and (5b) are defined and positive and in particular
are non-zero: Let x = x,, sox > 1, i.e., logx > 0, so the denominators log‘g/2 x and
log'*¢ x are positive. Since b; > 0, the denominator b; log*€ x is also positive. Let

v = bl-x +10g1—+£x'
Then
v > bix = bjxy > 1,

&/2

so log(v) > 0, which implies the denominator log® * v is positive.

Parts (1) and (3) of the technical condition are used in the proof of Lemma 25.1, which
says bjx, > e, sov > e and
loge/2 v > 1.

The proof of Lemma 25.2 uses this improved bound for the denominator logé/2 v in
conjunction with condition (5b).

Lemma 20.7. If
(1) k is a positive integer,
(2) by, ..., by are real numbers such that 0 < b; < 1 for each i,
(3) p is a real number, and
(4) >0,
then there exists a real number x,, such that (x, by, ..., by, b, €) satisfies the technical

condition.

We postpone our proof of Lemma 20.7 to Sections 27 and 28. No proof'is given in [Le]
of the corresponding assertion about Condition (4) of Leighton’s Theorem 2. However, a
footnote says “Such a constant value of x, can be shown to exist using standard Taylor
series expansions and asymptotic analysis.”

Definition. An admissible recurrence

R = (D,I,al, ...,ak,bl, ...,bk,f,g,hl, ""h’k)

satisfies the modified Leighton hypothesis relative to € > 0 if R satisfies Leighton’s noise
condition on [ relative to &, and
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(infl, by, ..., by, p, €)

satisfies the technical condition where p is the Akra-Bazzi exponent of R.

By definition of Leighton’s noise condition, the recursion set of an admissible recurrence
that satisfies the modified Leighton hypothesis must be contained in the interval (1, o).

Examples of proper admissible recurrences that satisfy the hypothesis of Leighton’s
Theorem 2 for some £ > 0 but violate (only) parts (5a) and (Sb) of the associated
technical conditions. In particular, they violate the modified Leighton hypothesis
relative to €. Let

log 100

~ loglog 10000

The (proper when x, = 10000) admissible recurrences described in Sections 13 and 15
satisfy the hypothesis of Leighton’s Theorem 2 with e = 0.74 and e = § — 1 = 1.074,
respectively. They also satisfy the first four parts of the associated technical conditions.
Both recurrences have b; = 0.99. The recurrences of Sections 13 and 15 have Akra-
Bazzi exponents p = —1 and p = 0, respectively. Recall from Section 15 that

log® 10000 = 100. Parts (5a) and (5b) of the technical condition are violated by both
recurrences for x = 10000 because

1
by + ———>099+ ————=1
Lt loglte x = * log 10000

The recurrence from Section 15 satisfies conditions (5a) and (5b) for all x > 10000.
(Recall that 10000 is the infimum of the recursion set.) The same recurrence would
satisfy the modified Leighton hypothesis relative to ¢ = § — 1 if conditions (5a) and (5b)
were modified to be non-strict inequalities.

The critical next lemma is similar to (the incorrect) Theorem 2 of [Le] and will be
established in Section 26 as a consequence of Lemma 26.1, which is proved using an
adaptation of arguments in [Le]. The proposition is applied in the proof of our main
result, Theorem 20.11.

Lemma 20.8. Let € > 0. If R is an admissible recurrence that satisfies the modified
Leighton hypothesis relative to &, then R has a unique solution T, which satisfies the
strong Akra-Bazzi condition relative to R and g for each tame extension g of the
incremental cost of R.

The next proposition is used in the proof of Lemma 26.1.

Lemma 20.9. Lete > 0. If
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R = (D,I,al, ...,ak,bl, ...,bk,f,g,hl, ""h’k)

is an admissible recurrence that satisfies the modified Leighton hypothesis relative to ¢,
then R satisfies the bounded depth and strong ratio conditions and has a unique solution,
which is locally ©(1).

Proof. Define x, = infI and let p be the Akra-Bazzi exponent for R, so the (k + 3)-
tuple
(x9, b1, .o, by, 0, €)

satisfies the technical condition. (Parts (1) and (3) of that condition imply x, > 1, so [ is
contained in (1, o) as required for satisfaction of Leighton’s noise condition on [ relative
toe.) Foralli € {1, ..., k}, define

Bi = sup (bi + hi(x)).

x€l X

Satisfaction of Leighton’s noise condition on I implies

1 1
Bi; < b; + sup (log”fx) =b;, +

xel log!*é x,
for all x € I and each index i. As previously explained, parts (1), (2), and (3) of the

technical condition imply
b;log'*¢x, > 1,

Ipl
) <1

so that

1 -
( b;log'*¢ x,

(with equality if p = 0). (If |p| is replaced with p as in [Le], the inequality above is
reversed when p < 0). The inequality above combines with part (5a) of the technical
condition to imply

log®/? (bixo + ) < log?/? x,,

log*¢ x,
so that
b; + 1 <1
i logi*€ x, ’
which implies 5; < 1. Define
B = sup B,
1<i<k

so that § < 1 and
b;x + h;(x) < Bix < Bx
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for all x € I and each index i. Thus R satisfies the ratio condition. Lemma 9.6 implies R
satisfies the bounded depth condition and has a unique solution, which is locally ©(1).

Now define
h:
a; = 1nf<bl + l(X)>

x€l X

for each index i. Satisfaction of Leighton’s noise condition on [ relative to € implies

Hu(xﬂ>

X

> b — <_
i Nog™ e x

) 3 1 blog®xy—1
" log '

a; = b; —su =
l l p ( 1+¢ Xo 10g1+£ X0

x€l
We conclude from log x, > 0 and b; log'*¢ x, > 1 that a; > 0. Define

a= inf «;,
1<isk

so that ¢ > 0 and
ax < a;x < bjx + h;j(x)

for all x € I and each index i. Since R satisfies the ratio condition, it also satisfies the
strong ratio condition. O

The next lemma essentially reduces our study of locally ©(1) solutions of admissible
recurrences to solutions of admissible recurrences that satisfy the modified Leighton
hypothesis.

Lemma 20.10. Suppose
R = (D, I, aq, ..., Ag, bl' ey bk,f,g, h’l’ ey h’k)
is an admissible recurrence with unbounded recursion set I. If T is a locally ©(1)

solution of R, then there exists a non-empty upper subset J of [ such that the admissible
recurrence

S = (D,],al, ""ak'bl’""bk’TlD—]’glj’hll]’""h’klj)

has T as its only solution and satisfies the modified Leighton hypothesis relative to some
e>0.

Proof. Lemma 20.1 implies R satisfies Leighton’s noise condition on some non-empty

upper subset U of [ relative to some € > 0. Let p be the Akra-Bazzi exponent of R. By
Lemma 20.7, there exists a real number z such that

(z,bq, ..., by, 0, )

satisfies the technical condition. There exists x, € U such that x, > z because
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supU =supl = .
Then
(%0, b1, oeer by, 0, €)

also satisfies the technical condition. In particular, x, > 1.

Define the upper subset ] = I N [x,, @) of I, so that ] contains x, and is therefore non-
empty. Let

S = (D,],al, ...,ak,bl, ...,bk,TlD_],glj, hll]’ 'hkl])

Lemma 20.6 implies S is indeed an admissible recurrence with T as a solution. The set ]
is contained in U because J and U are upper subsets of I with minJ = x, € U.
Therefore, the recurrence S satisifes Leighton’s noise condition on its recursion set J
relative to €. Since inf]/ = minJ = x, > z, we know that

(inf], by, ..., by, b, €)

satisfies the technical condition. Observe that p is the Akra-Bazzi exponent for S as well
as for R. Therefore, S satisfies the modified Leighton hypothesis relative to . Lemma
20.9 implies S has a unique solution, which must be T. O

Lemma 20.9 would be unnecessary if the modified Leighton Hypothesis redundantly
assumed the strong ratio condition. Lemma 9.6 would imply the other assertions of
Lemma 20.9: satisfaction of the bounded depth condition and existence of a unique
solution, which is locally @(1). In the proof of Lemma 20.10, Corollary 9.9 and Lemma
9.7 would allow us (with a little finesse) to choose the recurrence S to satisfy the strong
ratio condition and have a unique solution, which must be T

However, we intentionally omit the strong ratio condition from the modified Leighton
Hypothesis to maintain the analogy between our definition and the hypothesis of
Theorem 2 in [Le]. Furthermore, Lemma 20.9 is of some interest in itself.
The theorem below and its two corollaries replace Theorem 2 of [Le].
Theorem 20.11. Suppose T is a solution of an admissible recurrence R. Let G be the set
of tame extensions of the incremental cost of R. Either all or none of the following
statements are true:

(1) T is locally ©(1).

(2) T satisfies the strong Akra-Bazzi condition relative to R and g for some g € G.

(3) T satisfies the strong Akra-Bazzi condition relative to R and g forall g € G.
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Proof. By definition of an admissible recurrence, G is non-empty, so (3) implies (2). By
Corollary 20.4, part (2) implies (1). We now show that (1) implies (3). Suppose T is
locally ©(1), and let g € G.

Let I be the recursion set of R, and let A: I » R" be the Akra-Bazzi estimate for R
relative to g. Lemma 20.2 implies A4 is locally ©(1).

Suppose I is bounded, so there exist ay, a5, B1, B, € R such that
a; <T(x) < ay,

f1 < AX) < By,

and
aq

5 A ST() < %A(x)

for all x € I. Then T satisfies the strong Akra-Bazzi condition relative to R and g. We
now assume instead that I is unbounded. Let

R = (D, I, a, ..., Ag, bl' ...,bk,f,)/, hll ...,hk).

Lemma 20.10 implies there exists a non-empty upper subset J of I such that the
admissible recurrence

S = (D,],al,...,ak,bl,...,bk,TlD_],)/l],hlll,...,hkll)

has T as its only solution and satisfies the modified Leighton hypothesis relative to some
€ > 0. We conclude from y = g|, that y|; = g|;. Lemma 20.8 implies T satisfies the
strong Akra-Bazzi condition relative to S and g. Lemma 20.6 implies T also satisfies the
strong Akra-Bazzi condition relative to R and g. O

Corollary 20.12. If R is an admissible recurrence that satisfies the bounded depth
condition, then R has a unique solution T, which is locally ®(1) and satisfies the strong
Akra-Bazzi condition relative to R and each tame extension of the incremental cost of R.

Proof. Lemma 9.10 implies R has a unique solution T, which is locally ©(1). The
proposition follows from Theorem 20.11. O

Corollary 20.13. If R is an admissible recurrence that satisfies the ratio condition,
then R has a unique solution T, which is locally ©(1) and satisfies the strong Akra-Bazzi

condition relative to R and each tame extension of the incremental cost of R.

Proof. Lemma 9.6 implies R satisfies the bounded depth condition. The proposition
follows from Corollary 20.12. O

235



20. Replacements for Leighton’s Theorem 2

Independence of strong Akra-Bazzi condition from choice of recurrence. By
Theorem 20.11, satisfaction of the strong Akra-Bazzi condition by a solution T of an
admissible recurrence is independent of the choice of admissible recurrence that has T as
a solution (or any specific tame extension of the incremental cost).

Violation of Akra-Bazzi formula by recurrence with zero in closure of recursion set.
We now illustrate one reason the definition of a semi-divide-and-conquer recurrence
requires the recursion set to have a positive lower bound. Let

R=(D,I,ab,f,g,h)

where D = [0,),] = (0,0),a=2,b=1/2,f:{0} - {1}, g:1 - {1}, and h: I - R is
defined by
—-x/2, for0<x<1

h(x) = { 0, forx > 1.

Observe that inf] = 0, so R violates condition (2) of the definition of a semi-divide-and-
conquer recurrence and is therefore inadmissible. Define p = 1, so ab? = 1. Notice that

0, for0<x<1
x/2+h(x) = {x/Z, forx > 1.

The recurrence described by R, i.e.,

T B 1, forx =0
() = {ZT(x/Z + h(x)) +1, forx > 0,

is finitely recursive and therefore has a unique solution T by Lemma 8.2. Let d be the
depth-of-recursion function for the recurrence, so

0, forx=0
d(x)z{ 1, for0<x<1
[log, x| + 1, forx > 1.

An easy inductive argument on d(x) shows that
T(x) = 24091 — 1
for all x > 0. (The base case of the induction is T(0) = 1 = 2°*1 — 1)) Forallx > 1,
we have
log, x+1<d(x) <log,x + 2
and

3x < 4x —1 =21082%+2 _ 1 < T(x) < 2l082%+3 _ 1 =8x — 1 < 8x.

Therefore, T(x) = ©(x). Observe that T(x) < 3when 0 < x <1, so
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20. Replacements for Leighton’s Theorem 2

1<T(x)<8x+3

for all x € D, which implies T is locally @(1). However, Theorem 20.11 is inapplicable
to the inadmissible recurrence. The Akra-Bazzi integral (with our modified lower limit
of integration) diverges for all x > 0:

x *1 1 1
j 9w du = lim —du = lim (———) = 00,

o uptt t-0* J, u? t-0t \t x

The only plausible interpretation of our modified Akra-Bazzi formula

T(x)=0 (xp (1 + jxigﬁ du))
0

is the false conclusion that T'(x) = oo for sufficiently large x. The Akra-Bazzi formula is
unsatisfied by our example.
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21. Integer Divide-and-Conquer Recurrences

Recurrences encountered in computer science are commonly defined on the positive
integers or the non-negative integers. Restriction of attention to such recurrences avoids
many complications. Theorem 21.2 is our main result about recurrences with recursion
sets consisting of integers.

Lemma 21.1. If R is a divide-and-conquer recurrence with a recursion set that contains
only integers, then R satisfies the bounded depth condition and has a unique solution,
which is locally ©(1).

Proof. Let I be the recursion set of R, so I is positive (i.e., I € Z*) by definition of a
divide-and-conquer recurrence. Let

A; =10 (—o0,j]
for each non-negative integer j, so

INn(=o0,j+1) = A4

for each such j. Observe that Ay = @. Let d be the depth-of-recursion function for R, so
d(4,) =d(@) = 0.
Suppose m is a non-negative integer with d(4,,) < m. The recurrences R is proper by
hypothesis, so
(A1) EDN(—0o,m+1) € A, U (D\I)
for each dependency r: 1 — D of R. Then
d(Ams1) < d(Am U (D\D) + 1 = max{d(4,,),d(D\D)} + 1 < max{m, 0} + 1

=m+ 1.

By induction, d(Aj) < j for each non-negative integer j.
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21. Integer Divide-and-Conquer Recurrences

If X is a bounded subset of I, then X € A,, for some non-negative integer n, so
d(X) <d(4,) <n < oo

Lemma 9.2 implies R satisfies the bounded depth condition. In particular, R is finitely
recursive, so Corollary 8.5 implies R has a unique solution, T, which is positive.

Let S be a bounded subset of I, so S is a bounded set of integers, which implies S is a
finite set. Then T(S) is a finite set of positive real numbers, so T (S) has minimum and
maximum elements, which are positive real numbers, so T is (1) on S. Therefore, the
restriction of T to [ is locally ©(1). Lemma 9.1 implies T is locally @(1). O

Theorem 21.2. Let R be a divide-and-conquer recurrence with low noise. If the
recursion set of R contains only integers and the incremental cost of R has polynomial
growth, then R is admissible and has a unique solution, which satisfies the strong Akra-
Bazzi condition relative to R and each tame extension of the incremental cost of R.

Proof. Lemma 21.1 implies R satisfies the bounded depth condition and has a unique
solution T, which is locally ®(1). Corollary 5.3 implies the incremental cost of R has a
continuous, polynomial-growth extension to R*. Continuity of the extension implies it is
locally Riemann integrable and is therefore tame. Now R satisfies the definition of an
admissible recurrence. The proposition follows from Theorem 20.11 (or Corollary
20.12). O

Base case of integer recurrence. Let R be a divide-and-conquer recurrence with domain
D, recursion set I, and base case f. Suppose D has a finite lower bound (as is common in
practice), so the domain D\I of f has the same finite lower bound. The recursion set [ is
a non-empty upper subset of D, so D\I has a finite upper bound. Thus D\I is a bounded
set. Further suppose that D\/ contains only integers (e.g., if D contains only integers).
Then D\I is a bounded set of integers and is therefore finite. Our definition of a divide-
and-conquer recurrence requires that f has a positive lower bound and a finite upper
bound. We note (again) that a real-valued function on a finite set has a positive lower
bound and finite upper bound if and only if the function is positive. We conclude that
when D\I is a set of integers and inf D > —oo, the requirement f = O(1) is equivalent
to positivity of f.

Obvious tame extensions of incremental costs. Many polynomial-growth functions
have obvious, natural tame extensions. For example, the function x ~ logx on [2, ) is
a tame extension of the polynomial-growth function n + logn on Z N [2, ).

Floors and Ceilings in Dependencies. Let b € (0,1). Functions of the form x ~ |bx]
or x ~ [bx] on a positive set have x — bx as a linear approximation. Observe that

|[be—bx|<1=0( )
log€ x

and
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21. Integer Divide-and-Conquer Recurrences

|[bx]—bx|<1=0< il )
log€ x

for all real ¢ (in particular, for some ¢ > 1). Dependencies of the form x + |bx] or
x + [bx] can be represented as

x - bx + (|bx] — bx)
or

x - bx + ([bx] — bx),

respectively, i.e. with noise terms x — |bx| — bx or x — [bx]| — bx, respectively. These
representations satisfy the requirement of low noise for an admissible recurrence.

Example. The recurrence

1, forn=1
T(n) = { 2, forn =2
2T(In/3]) + T(n — 2|n/3]) + n, forn >3

with domain Z* can be represented as a divide-and-conquer recurrence R described as

f(n), forn € Z+\I

Tn) = {2T(n/3 +h () +T(n/3 + h,(n)) +n,  fornel

where I = Z N [3,), f:{1,2} - R is defined by f(1) = 1 and f(2) = 2, and
hy, hy: 1 = R are defined by
hi(n) = In/3] —n/3

hy(n) = 2(n/3 — |n/3)),

and

respectively. The incremental cost is the function g: I — R defined by g(n) = n.
Corollary 2.12 implies g has polynomial growth. The inequalities |k, (n)| < 1 and
lhy(m)| < 2 imply

A ()l = 0 (1ogc )

for each real number ¢ and each i € {1,2}. In particular, R has low noise. Theorem 21.2
implies R is an admissible recurrence and has a unique solution T, which satisfies the
strong Akra-Bazzi condition relative to R and each tame extension of g.

Let g* be the identity function, x + x, on [3,0), so g* is an extension of g. The
function g* has polynomial growth by Corollary 2.12 and is locally Riemann integrable.

Therefore, g* is a tame extension of g.

The Akra-Bazzi exponent is 1 because

240



21. Integer Divide-and-Conquer Recurrences

31 31
Therefore,

T(n) = @(nl (1 + jnuil du)) = @(n (1 + j”dju)) = O(nlogn).
3 3

Lemma 21.1 implies R is finitely recursive, which implies T is integer-valued (by
induction on the depth-of-recursion).

The ratio and strong ratio conditions play a role elsewhere, so we include the following
proposition for sake of completeness:

Lemma 21.3. If R is a divide-and-conquer recurrence with positive domain, low noise
and a recursion set that contains only integers, then R satisfies the strong ratio condition.

Proof. Let D and I be the domain and recursion set, respectively, of the recurrence. Let
11, -, T%: I = D be the dependencies, which are positive functions because D is a positive
set. For each non-empty, finite subset S of I, define

Q) ={r(n)/n:neSand1<i <k}

Positivity of I implies the denominators appearing in the definition of Q(S) are non-zero.
The elements of Q(S) are positive because I is a positive set and 7y, ..., 13, are positive
functions. The non-empty set Q(S) of positive real numbers is finite and therefore has a
minimum and maximum, which are positive. Furthermore, g < 1 for all ¢ € Q(S)
because R is proper. Therefore, max Q(S) < 1.

If I is finite, then 0 < min Q(I) < maxQ(I) < 1, i.e, the strong ratio condition is
satisfied. Now suppose [ is infinite. We conclude from I € Z that I is unbounded.
Lemma 9.8 and low noise of R imply there exists a non-empty upper subset / of I and
real numbers a and f with 0 < @ < 8 < 1 such that am < r;(m) < Bm forallm € J
and each index i. If I =], then R satisfies the strong ratio condition. Suppose I # J, so
I\] # @. The set I\] is a set of positive integers bounded above by min/, so I/ is finite.
Let L be the minimum of a and min Q(I\\/), and let U be the maximum of 8 and

max Q(I\/). Then0 < L < U < 1and Ln < r;(n) < Un for all n € [ and each index i.
In other words, R satisfies the strong ratio condition. O

A proper, admissible recurrence with domain N that satisfies the ratio condition but
does not satisfy the strong ratio condition. The proper, admissible recurrence

1, forn € {0,1}

T(n) = {ZT([n/ZJ ~1)+1, fornel
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21. Integer Divide-and-Conquer Recurrences

with domain N and recursion set I = Z N [2, o) satisfies the ratio condition because

In/2] —1<n/2
for all n € I. However,
12/2]—-1=0
and
13/2] -1=0,

so there is no positive, linear lower bound for the dependency n — |n/2| — 1.
Therefore, the strong ratio condition is violated.

Example of a divide-and-conquer recurrence with domain Z* that does not have low
noise and does not satisfy either bound of the strong ratio condition. The recurrence

1, forn € {1,2}
T(n) = Tn—1)+1, foroddn > 3
T(In/logn]) + 1, forevenn > 4

with domain Z* can be represented as the divide-and-conquer recurrence

B 1, forn € {1,2}
T(n) = {T(n/Z +h(n)) +1, fornel

with domain Z* and recursion set I = Z N [3, ) where h: I — R is defined by

_ n/2 -1, if nis odd
h(n) = {[n/IOgnJ -n/2, if n is even.

The recurrence does not have low noise. The ratio condition is also violated.
Furthermore, there is no positive linear lower bound as required by the strong ratio
condition.
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22. Replacement for Leighton’s Lemma 2

The following proposition is our replacement for Lemma 2 of [Le].

Lemma 22.1. Let R be a divide-and-conquer recurrence with recursion set I and
incremental cost g, and let p be a real number. Suppose R satisfies the strong ratio
condition and g has a tame extension G. Let S be the set of dependencies of R and let

I"={x€l:r(x) € domain(G) forallr € S}.
Then there exist positive real numbers c¢; and ¢, such that

* G
c1g(x) < xP j( S du < c,g(x)
X

forallx € [*and allr € S.

Proof. If I is empty, the proposition is vacuously satisfied for every choice of positive
real numbers c¢; and c¢,. Therefore, we may assume that [* is non-empty.

Let H = domain(G). By definition of a tame function, H is a non-empty, positive
interval. Define f: H = R by
G(u)

f(u)=m

for all u € H where §: Rt —» R* is defined by §(w) = wP*! forallw € R*. (The
function § is introduced as a minor convenience; our reason for defining § on R* instead
of H will be explained later.) The function f is tame by Corollary 10.3. In particular, f
is locally Riemann integrable. If G is identically zero, then f and g are also identically
zero and the proposition is satisfied with ¢; = ¢, = 1. Therefore, we may assume G is
not identically zero. Lemma 2.7 (also Lemma 10.1(1)) implies G is positive, so f and g
are positive.

Satisfaction of the strong ratio condition implies the existence of real numbers a and

such that
0<as<sp<l1
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22. Replacement for Leighton’s Lemma 2

and
at < o(t) < Bt

forallt € I and all ¢ € S. Positivity of G and H implies ¥;,,(G) and ¥;,4(G) are
defined; they are positive by Lemma 2.10(2) and finite by Lemma 2.16.

Define positive real numbers

~ 1-p)
T, 56 - max(1, BPY)
and
CEOLYAG,

min(1, aP*1) °

Recall that I = domain(g) by definition of a semi-divide-and-conquer recurrence. Then
I € H because G is an extension of g. Consequently, I* € H.

Suppose x € I*,so x € H and x > 0. Define q: S — H by q(1) = A(x) forall A € S.
The set S is finite and non-empty by definition of a semi-divide-and-conquer recurrence,
so q(8), i.e.,

{A(x) : 2 € S},

is a non-empty, finite set of real numbers and must therefore have a minimum element, z,

1e.,
z = min A(x).
A€ES ( )

In particular, z = u(x) for some 4 € S. Then z € H and
0<ax<z<Alx) <Px<x
for all 1 € S. Connectivity of H combines with z, x € H and the inequalities above to
imply
[L,x] € [z,x] € H S Rt = domain(6)
for all
Le{Bx}u{A(x): €S}

In particular, f is Riemann integrable on [L, x] for each such L.

Letr €S, so
[Bx, x] € [r(x),x] € [z x].

Non-negativity of f and xP implies

xP xf(u)du < xP jx fw)du < xP jxf(u)du.
Bx r(x) z
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22. Replacement for Leighton’s Lemma 2

We will show that

X
xP | fwdu = c;g(x)
Bx
and

w | Fudu < eg(),

SO
x

g(x) < xP j RLOITERIO

as required. Observe that

A([px,x]) = 1/B.
Then Lemma 2.10(4) and x € [Bx,x] € H imply

G(x) g(x)

inf G([Bx, x]) = ¥,,5(0) = TN )

Monotonicity of the function § combines with

[Bx,x] € R* = domain(5)
to imply

max 8 ([Bx, x]) = max(8(x), 5(Bx)) = max(xP*+?, (Bx)P*1) = xP*1 - max(1, BP+1).
Positivity of G and § implies

inf G([Bx, x]) - g(x)
max (B, x) = Wy/5(G) - xP*E - max(L, fr71)

inf f([Bx,x]) =

Then positivity of xP and x — fx imply

N e Y 1co
~ Wy/p(6) - xP*1 - max(1, pPH1)

xP xf(u)du > xP(x — Bx) -inf f([Bx, x]
Bx

= c19(x)
as claimed. Lemma 2.9(5) and [z, x] € [ax, x] imply
Az, x]) < A(Jax,x]) = 1/a.
Then Lemma 2.10(4) and x € [z, x] € H imply

sup G([z,x]) < W1/2(G)G(x) = ¥1,4(G) g (x).
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22. Replacement for Leighton’s Lemma 2

Monotonicity of the function § combines with

[z,x] € [ax,x] € Rt = domain(6)
to imply
mindé([z, x]) = min§([ax, x]) = min(&(x),&(ax))

= min(x?*1, (ax)?*1) = xP*1 - min(1, a?*?).

(We defined domain(6) = R* to ensure that [ax, x] € domain(6) as required by our
argument above about min §([z, x]).)

Positivity of G and § implies

supG(lz,x]) _ supG(lzx]) _  Wi/e(G)g()

0 < supflzx]) < min§([z,x]) ~ miné([ax,x]) =~ xP*1-min(1, aP*1)

Then the inequalities x? > 0 and
ax <z<x

imply
* r xP(x — Lpl a G
x -L Wdu < xP(x —z) -sup f([z,x]) < (xp+1 C.(xm)in({, a(pzf)(X)

= c9(x)
as claimed. The proposition is proved. O

Dependency on tame extension. The choice of tame extension G determines the valid
choices for ¢; and ¢, in Lemma 22.1.

Example with empty I*. The divide-and-conquer recurrence

1, forl<u<?
— u
T(w) T(§)+1, for2 <u<3

satisfies the hypothesis of the Lemma 22.1 (for any p € R) with [ = (2,3], g: I - {1},
G=g,and S = {r} where r:I - R is defined by r(u) = u/2 forallu € I, so I* = @.

Application of the Lemma. We use Lemma 22.1 only in the proof of Lemma 26.1,
where R is an admissible recurrence satisfying the modified Leighton Hypothesis relative
to some € > 0. The incremental cost has a tame extension by definition of an admissible
recurrence. Lemma 20.9 implies R satisfies the strong ratio condition, so R is proper, i.e.,
is a divide-and-conquer recurrence. The inequalities of Lemma 22.1 are applied with p
as the Akra-Bazzi exponent and only for certain x € I that are guaranteed to satisfy

r(x) € I forall r € S, so r(x) € domain(G) for all such x and r.
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23. Partition of the Recursion Set

The claimed proof of Leighton’s Theorem 2 uses an indexed partition of the domain,

[1, o), of certain recurrences into non-empty, disjoint, bounded subintervals. (The initial
subinterval is closed; the others are left-open, right-closed, unit intervals.) The argument
proceeds by strong induction on the index and relies on an asserted property of the
partition. As explained in Section 19, the hypothesis of Theorem 2 is insufficient to
guarantee that the partition has the required property.

Our proof in Section 26 of Lemma 26.1 is an adaptation of Leighton’s argument with an
analogous partition. Lemma 23.2 implies the existence of a partition with the necessary
properties, including synergy with Lemma 22.1, which is also used in the proof of
Lemma 26.1.

We partition the recursion set rather than the recurrence’s domain because the strong
Akra-Bazzi condition is more naturally a statement about the behavior of a recurrence’s
solution on the recursion set than on the recurrence’s domain. Unlike Leighton’s
Theorem 2, the hypothesis of Lemmas 26.1 does not require the recursion set to be an
interval. Furthermore, the elements of our partition are not necessarily intervals.

Lemmas 26.1 is applicable to admissible recurrences that satisfy the modified Leighton
hypothesis. Lemma 20.9 says all such recurrences also satisfy the strong ratio condition.
In particular they must be proper, i.e., they are divide-and-conquer recurrences.

Lemma 23.1. Suppose R is a divide-and-conquer recurrence that satisfies the strong
ratio condition. Let I be the recursion set of R and let x, = infl. Then there exists a real
number z > X, such that each dependency of R maps

INz+j—1,z+]
into
IN[xgz+j—1]
for each positive integer j.

Proof. By definition of a semi-divide-and-conquer recurrence, the set I is non-empty and
has a positive lower bound. Therefore, x, is a positive real number.
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23. Partition of the Recursion Set

Satisfaction of the ratio condition means there exist real numbers a and S such that
0<a<p<l1
and

ax <r(x) < Bx

for all x € I and each dependency r. Let

so z is a real number such that

and
B
— >0
z = 1-F
Let j be a positive integer, so z + j — 1 = z. The function
" t
H —
t+1
on R™ is increasing, so
+j—-1 2
z7J — = z = 1-p = L.
zZ+] z+1 L 1
- B

Let D be the domain of the recurrence R. If r is a dependency of R and

xeEIN(z+j—-1,z4+]],
then r(x) € D and

Z4j-1y |
xOSaz<axSr(x)SﬁxS(Tj)(2+])=Z+]—1,

which implies
r(x) €D N (xg,z+j—1].

The recursion set [ is an upper subset of D by definition of a semi-divide-and-conquer
recurrence, so D N (x,, ) € I. Therefore,

rx)eln(xg,z+j—11<In[xy,z+j—1]

as claimed.
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23. Partition of the Recursion Set

The following minor variation on Lemma 23.1 is slightly more convenient for proving
Lemma 26.1:

Lemma 23.2. Suppose R is a divide-and-conquer recurrence that satisfies the strong
ratio condition. Let I be the recursion set of R. Then there exists a non-empty lower
subset S of N, a partition I of I into non-empty, disjoint, bounded subsets, and a bijection
m: S — II such that for each dependency r of R and each positive element n of S,

n—1
r(l,) € U I
j=0

where I, denotes (t) forallt € S.

Proof. Let x, = infl. By definition of a semi-divide-and-conquer recurrence, the set I is
non-empty and has a positive lower bound. Therefore, x is a positive real number.

Let z be as in Lemma 23. In particular, z > x,. Define

AO = I N [xO,Z],
so Ay 1s non-empty. Let
Apn=In(z+m—-1,z+m]

for each positive integer m. The sets A, A1, A, ... are disjoint and bounded.
Furthermore,

Lemma 23.1 says each dependency of R maps A4,, into I N [xy,z + m — 1], i.e.,

m—1

Aj,
j=0
for each positive integer m. Let

W ={j€N:A + 0}
and

so II is a partition of I into non-empty, disjoint, bounded subsets. Observe that 0 € W
since Ay, # @. In particular, W is non-empty.

The set W is a subset of the countable set N and is therefore countable. Either |W| = |N|
or W is finite. There exists an order preserving bijection A: S — W for some non-empty
lower subset S of N. Either S = N or S is finite. Define a bijection m: S — Il by

m(t) = Ay, i-e., Iy = Ay forall t € S. Non-emptiness of S implies 0 € S, i.e.,
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minS =0 =minW.

Then A(0) = 0, i.e., I, = Ay because A: S — W is an order preserving bijection. Suppose
n is a positive element of S, so
A(n) > A(0) = 0.
Define
Y={ieW:i<A(n)}.
Then
Y=A{jeS:j<n)=A{jeN:j<n}

because A: S — W is an order preserving bijection and S is a lower subset of N containing

n. Therefore,
A(n)-1

n-1 n-1
T(In) = T(Al(n)) c U Ai = UAl = UAA(]) = UI]
j=0 j=0

i=0 i€y
for each dependency r of R. O

Initial element of the partition. Let R be a divide-and-conquer recurrence that satisfies
the strong ratio condition. Also suppose the incremental cost of R has a tame extension
G. Let I, be as in Lemma 23.2, so [ is a bounded subset of I. The unique solution of R
and the Akra-Bazzi estimate for R relative to G are locally ©(1). (See Lemmas 2.2(2),
9.6, and 20.2.) Therefore, they are ®(1) on I, as required by the base case of an
inductive argument analogous to the argument for Theorem 2 in [Le]. (See the proof of
Lemma 26.1.)

Induction on the index of a partition element. Our partition of the recursion set may
be finite, so induction on the index set S (which is a non-empty lower subset of N)
requires a slight amount of care. The relevant strong induction principle is as follows:
Let L* be a subset of a lower subset L of N. If 0 € L* (which implies 0 € L, i.e., L is non-
empty) and n + 1 € L* for all n € N that satisfyn + 1 € L and

Nn[o,n] cL,

then L* = L. We prove this principle by standard strong induction: Inclusion of 0 in L*
implies
0€L*U(N\L).
Suppose m € N such that
Nn[0,m] € L* U (N\L).
Ifm+1¢L,then
m+1€N\LCSL U(N\L).

Now suppose instead that m + 1 € L. Then

Nn[o,m]cL

250



23. Partition of the Recursion Set

because L is a lower subset of N. Therefore,
Nn[om]cLn(Lru(N\L) =L,
which combines withm + 1 € L to imply m + 1 € L*, so
m+1€L U (N\L).
Thus
m+1€L*U(N\L)
regardless of whether m + 1 € L. By (strong) induction,
N C L*U(N\L)
(i.e., N =L*U (N\L)). We conclude from L € N that
L < L*U(N\L),
which implies L € L*. Then L* = L since L* € L by hypothesis. The principle is proved.
Alternative formulation. Of course, the inductive principle for lower subsets of N may
be restated as follows: If A is a lower subset of N, and A* is a subset of A such that
n € A* for all n € A satistying
ANn[0,n—1] c€ A%,
then A* = A. Observe that
AN[0,—1]=4AnQ =0 c A%,

so the hypothesis implies 0 € A* if 0 € 4, i.e., A is non-empty. Of course, A* is empty if
A is empty.
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24. False Inequalities in Inductive Steps of Leighton’s
Theorem 2 When p < 0

Leighton’s Theorem 2 is applicable to recurrences of the form

0(1), forl <x <x,
k

Z a;T(bix + hy(x)) + g(x), for x > x,.

i=1

T(x) =

that satisfy various requirements. In particular, condition 1 of that proposition requires
0 <b; <1landx, = 1/b;. As explained in Section 19, those particular properties
combine with condition 4(a) of Theorem 2 to imply b;log!*¥x, > 1 for each index i
when p # 0 (and also when p = 0 if we consider 0° to be undefined). Here € is a
positive real number satisfying conditions 2 and 4 of Theorem 2. As usual, p is the

unique real number satisfying
K
Z aibg9 =1.

i=1

The real-valued functions g and hy, ..., hj, have domains containing [1, o). Condition 2
says |h;(x)| < x/log'*¢ x for each index i and all x > x,. If p < 0, then the function
t — tP on R* is strictly decreasing and

b;log*téx > b;log*¢x, > 1
for all x > x;, so

hi (.X') 1
——F < < 14+—
b;log'*ex b;x b;log'*¢x

<1+ ! )p< 1+h"(x)p<<1 ! )p
b;,log*éx) ~ bx ] — b;logi*éx/)

for all such x. The inductive step in Leighton’s (incorrect) argument for the existence of
cs € R such that

0 <1

and
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24. False Inequalities in Inductive Steps of Leighton’s Theorem 2 When p < 0

T(x) = csxP 1+; 1+ xg(u)d
(x) = csx 1Ogs/2x 1 up+1 u

for all x > x, implicitly claims that

1+hi(x) 2D><1 ! )p
bx )] — b;log'*éx

for all such x. When p < 0 and x > x, the inequality above is equivalent to

hi ()" 1\
14 169 =<1__),
b;x b;log'*ex

X

1e.,
hi(x) =

- 10g1+£x '

The inductive step in Leighton’s (incorrect) argument for the existence of ¢, € R* such

that
1 *gw)
T(X) < céxp (1 - k)gsz> (1 + _[1 up+1 du)

for all x > x, implicitly claims that

(1 + hi(x))p < (1 + ;)p

b;x b;logt*éx

for all x > x,. When p < 0 and x > x,, the inequality above is equivalent to

(++5) = (1 g
bix ) b;,log'*éx/) ’

X

ie.,
h;(x) = ———.
l 10g1+£x
However,
X X

+ —
10g1+£x 10g1+£x
for all such x. Therefore, at least one of the inductive steps is incorrect when p < 0.
Of course, there exist recurrences that satisfy the hypothesis of Leighton’s Theorem 2 but

have negative values of p. An example is provided in Sections 13 with p = —1; in
particular, p is negative.
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25. Adjustment of Inequalities for Sign of p

Section 20 defines the technical condition, which plays the same role for Lemma 26.1
(and indirectly for Lemma 20.8) as Leighton’s condition 4 (and part of his condition 1)
does for Theorem 2 of [Le]. However, the technical condition uses |p| where conditions
4(a) and 4(b) of Leighton’s Theorem 2 uses p, the Akra-Bazzi exponent. In conjunction
with Lemma 25.3, the change enables a resolution of issues raised in the preceding
section about negative Akra-Bazzi exponents.

We note that Theorem 2 of [Le] cannot be remedied by merely replacing p with |p| in
conditions 4(a) and 4(b). For example, Section 15 describes a finitely recursive
counterexample to Theorem 2 with p = 0, i.e., |p| = p. With a slight modification to the
recurrence of Section 13 when x, = 10000, we can also produce an infinitely recursive
counterexample with p = 0. It suffices to let a = 1 and

log 100

= loglog 10000

as in Section 15. Satisfaction of the hypothesis of Theorem 2 follows from the same
arguments as in Section 15. With a few obvious changes, the analysis in Section 13
remains valid. In particular, there exists a solution T of the recurrence that is unbounded
on every open set in (x,, ). The Akra-Bazzi formula for T reduces to

T(x)=0 (1 + jx%> = 0(logx),

which is false.

Lemma 25.1. If
(%0, b1, «eur by, 0, €)

satisfies the technical condition, then b;x, > e forall i € {1, ..., k}.
Proof. Leti € {1, ...,k}. Parts (1) and (3) of the technical condition imply x, > e and

b;log x, > 1.
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25. Adjustment of Inequalities for Sign of p

Define f: (1,0) = R by f(t) = t/logt, so f is differentiable. The derivative

logt — 1

fr©= log?t

is positive on (e, ). The mean value theorem implies

flxo) > f(e) =e,

bixy = (b;logxo)f (xo) > e.

SO

Lemma 25.2. Suppose
R = (D, I, a, ..., Ag, bl' ...,bk,f,g, h’l’ ""h’k)

is an admissible recurrence that satisfies the modified Leighton hypothesis relative to
some € > 0. Let p be the Akra-Bazzi exponent of R. Alsoletx € I andi € {1, ..., k}.
Define

1
w = )
log®/2 (bix + loglLJrex)
h;(x)
y=1+ bx
and
1
Z= logé/2x "
Then
y > 0.
If p = 0, then
yP(1l+w)>1+2z
and
yPl-w)<1l-z
If p <0, then
yPAl+w)yt<(1+2)7?!
and

yP(1—-w) >0 -2)"L

Proof. Let x, = infl, so x, > 0 by definition of a semi-divide-and-conquer recurrence.
Of course, x = x,. Satisfaction by R of the modified Leighton hypothesis by relative to €
implies

(x0, b1, ., by, 0, €)

satisfies the technical condition. Recall from the discussion in Section 20 after the
definition of the technical condition that all denominators appearing in the definitions of
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25. Adjustment of Inequalities for Sign of p

w, v, and z are defined as positive real numbers; in particular, the denominators are non-
zero, so w, y, and z are defined as real numbers. Furthermore, w > 0 and z > 0. Part
(1) of the technical condition says 0 < b; < 1. Lemma 25.1 implies b;x, > e, so

x > b;x > e. Observe that

1
o= log®/2 (bix + ) > log?/2(b;x) > log¥/%e = 1,

logl*+ex

which impliesw < 1,1.e., 1 —w > 0. Similarly,
1
-= log®/2 x > log®/2(e) = 1,

which implies z < 1,1.e., 1 — z > 0. Satisfaction by R of the modified Leighton
hypothesis relative to € implies satisfaction of Leighton’s noise condition on [ relative to
g, SO

x
|h; ()] Slogl—ﬂx-

As explained in Section 20 after the definition of the technical condition, parts (1), (2),
and (3) of the technical condition imply

b;log'*éx > 1.

Define
L=1 !
B b;log'*éx
and
U=1+ !
B b;log'+éx’
Then
O0<L<y<U.

In particular, y > 0 as claimed. Furthermore,
0< Pl < ylpl < ylr!
and
0<U-lrl < y—lpl < [-lpl.
Part (5) of the technical condition says
P'(14+w)>1+2z
and

url1—w)<1-z.

Suppose p = 0, so |p| = p. Then
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25. Adjustment of Inequalities for Sign of p

Ll < yp < glvl,
Positivity of 1 + w and 1 — w imply

yP(1+w) = LPI(1 +w)

and
yP(1—w) <UPI(1 —w).

Then

yP(l+w)>1+2z
and

yYYl-w)<1l-z
as claimed.
Now suppose instead that p < 0, so p = —|p|, which implies

UP <yP < LP,

Part (5) of the technical condition combines with p = —|p| and positivity of L, U, 1 + w,

and 1 + z to imply

Pl+w) < (1+2)t
and

Ur1—-w)t'>0-2)1

Positivity of (1 + w)~1 implies

yP1+w) P <LP1+w)?

and
yPA-w)t 2 UP(1-w),
)
yPl+w)t<(1+2)7?!
and
yPA-w)t>0-2)7"1
as claimed O

As explained in Section 24, Leighton’s argument in [Le] for his false Theorem 2
implicitly uses the inequalities

(1 - )p< 1+h"(x)p<<1+ : )p
b,logt*éx) — bx ) — b;log'*¢x

for all x > x, where x, and p are defined as in [Le]. However, at least one of the
inequalities is violated if p < 0. Our proof of the analogous Lemma 26.1 uses
inequalities provided by the next proposition instead.
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25. Adjustment of Inequalities for Sign of p

Lemma 25.3. Let € > 0, and suppose

R = (D, I, a, ..., Ag, bl' ey bk,f,g, h’l’ ey h’k)
is an admissible recurrence that satisfies the modified Leighton hypothesis relative to ¢.
Let xo, = inf] and let p be the Akra-Bazzi exponent of R. Letr;,..,1,:1 = D be the

dependencies of R defined by
ri(u) = bju + h;j(u)

forallu € I and j € {1, ..., k}. Define z,L, U: [x,, ) — R* as follows:

z(t) = loge/t
If p = 0, then

L(t) =14 z(t)
and

U(t) =1—z(t).
Ifp <0, then

L) = (1-z()"

and

U@ =(1+21)".
The functions L and U satisfy

1
E<U(t)<1<L(t)<2

for all t € [x,, o). Furthermore,

(ri(x))pL(ri(x)) > bl xPL(x)
and

(r: (x))p U(ri(x)) < bPxPU(x)
forallx € I and i € {1, ..., k} that satisfy 7;(x) = x,.
Proof. Satisfaction of the modified Leighton hypothesis by R relative to € implies
(%0, b1, oo by, 0, )

satisfies the technical condition. Parts (1), (3), and (4) of the technical condition imply
xo > e and log&/2x, > 2. Let t € [xy, ), so t > e and log?/?t > 2. In particular,
log&/2t > 0, so z(t) is a positive real number as claimed. The inequalities

1
0<z(t) < 3
imply
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25. Adjustment of Inequalities for Sign of p

1
§<1—z(t)<1<1+z(t)<2
and
1 -1 -1
5 < (1+2(0) <1<(1-2z@1) <2
Thus

1
E<U(t)<1<L(t)<2

as claimed. In particular, L(t) and U(t) are positive real numbers as claimed.

Suppose x € [ and i € {1, ..., k} such that ;(x) = x,. Inclusion of x in I implies x = x,,
so x > e. Part (1) of the technical condition says b; > 0, so b;x > 0 and we may define
the real number

h;(x)

=1
Y + bix

Lemma 25.2 says y > 0, so y? is defined as a positive real number. Observe that
logx > 0, so log**€x is also defined as a positive real number. Define the real number

S=bix+log1—+£x.

By definition of the modified Leighton hypothesis, R satisfies Leighton’s noise condition
on [ relative to €. In particular,
r;(x) < s.

The numbers 7;(x) and s are contained in the domain, [x,, %), of L and U. Furthermore,
L is a decreasing function and U is an increasing function. Those facts combine with
Lemma 25.2 to imply

yPL(r;(x)) = yPL(s) > L(x)
and

yPU(1;(x)) < yPU(s) < U(x).
We conclude from

_ r; (x)
 bix
that
(ri(x))pL(ri(x)) > bl xPL(x)
and
(ri(x))pU(ri(x)) < bPxPU(x)
as claimed. O
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26. Upper and Lower Bounds for Solutions

The proposition below is analogous to the inductive hypothesis of Leighton’s (incorrect)
proof of his (false) Theorem 2 in [Le]. Our proof is an adaptation of his argument.

Lemma 26.1. Let € > 0. Suppose
R = (D, I, a, ..., Ag, bl' ...,bk,f,g, h’l’ ""h’k)

is an admissible recurrence satisfying the modified Leighton hypothesis relative to €, and
suppose G is a tame extension of g. Then R has a unique solution T, and there exist
positive real numbers A, and A, such that

ML(x)A(x) < T(x) < 2,U(x)A(x)

for all x € I where A: 1 —» R* is the Akra-Bazzi estimate for R relative to G, and the
functions L, U: [xy, @) — R™ are defined as in Lemma 25.3 with x, = inf 1.

Proof. (The existence of a tame extension of g is guaranteed by definition of an
admissible recurrence.) Lemma 20.9 implies the recurrence satisfies the strong ratio
condition and has a unique solution T, which is locally ©(1). Define ry, ..., 1%:1 = D by

r;(x) = bix + hy(x)

forall x € I and alli € {1, ..., k}. The ratio condition implies R is proper, i.e., 1;(x) < x
for each such x and i. By definition of a semi-divide-and-conquer recurrence, x, > 0
and g is a non-negative function with domain /. Furthermore, G is non-negative by
Lemma 10.1(1) (or Lemma 2.7). By definition of a tame function, domain(G) is a non-
empty, positive interval. Of course, x, = inf domain(G) since I = domain(g) is
contained in domain(G). Observe that I is contained in [x,, ), which is the domain of
Land U.

Let p be the Akra-Bazzi exponent of R. Corollary 10.3 implies the function

uwe G(u)/uPtt
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26. Upper and Lower Bounds for Solutions

on domain(G) is tame (in particular, it is locally Riemann integrable.) Given
Uy € 1U {x,} and u, € I with u; < u,, either [uy, ;] € domain(G) or the following
conditions are satisfied:

Uy > Uy = xo = infdomain(G) € domain(G),

[x0, 2] N domain(G) = (x, 4],
and the improper integral

#2G(u) (26w
X9 0 J]

converges by Lemma 10.5. (Thus any improper integrals in this proof converge.)

By Lemma 23.2, there exists a non-empty lower subset S of N, a partition II of I into
non-empty, disjoint, bounded subsets, and a bijection r: S — II such that for all
i € {1, ..., k} and each positive element m of S, we have

m—1

r;(I,,) € U I; ¢ I € domain(G)
j=0

where I, denotes (t) for all t € S. By Lemma 22.1, there exist positive real numbers ¢,
and ¢, such that

Y o G(u)
c1g(y) < y”j o du < 6g(y)
ri) U

forally € I\l and all i € {1, ..., k}.

The function A is locally ©(1) by Lemma 20.2, so there exist positive real numbers c;
and ¢, such that

Aly) € [c3,cql.

Since T is locally ©(1), there exist positive real numbers cs and cg such that
T(Io) € [cs, 6l

Define positive real numbers

and

Let S™ be the set of all § € S that satisfy

MLW)AW) < T(w) < L, UW)A(w)
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26. Upper and Lower Bounds for Solutions

forall v € Iz. Lemma 25.3 implies

1
OX= (E' 1)
and
L) € (1,2),
SO

c 2¢ 1
MLWAW) < —=2-¢c, =cs ST(W) < ¢ = —2+ = ¢3 < LUW)AW)
2¢y ¢z 2
for all w € [,. Therefore, 0 € S*. Supposen € N suchthatn + 1 € S and
Nn[0,n] €S

(There is no such n if S = {0}, i.e., I = I)). Letz € I,.4, s0

r;(z) € I; c 1S [xy,»®)
foralli € {1,...,k}. Then
/'llL(ri (Z))A(ri(z)) < T(ri (z)) < AZU(ri(z))A(ri (z))

for each such i. Since T is a solution of R,

k
() = ) aT(n() + 9@,
Positivity of a4, ..., a; implies -
k

TG) > ) ahL(r@)ARED) +9(2)
ie., =

. p i@ G (u)

T(z) > Z ai)llL(ri(z))(ri(z)) (1 + j o du) + g(2).

Lemma 25.3 implies

L(ri (z))(ri (z))p > bfsz(z)

for each index i. Then positivity of a4, ..., ax, and A, combines with non-negativity of
the integrand to imply

k ry(2)
T(z) > Z a;A b?zPL(z) (1 + j zgg du) + g(2),

i=1 *o
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26. Upper and Lower Bounds for Solutions

ie.,
k

T(z) > z aibip/llL(z)zp (1 + jz iglg du — jz zsﬁ du) + g(2).
Xo ri(2)

i=1

The defining inequality for ¢, combines with positivity of a4, ..., ax, by, ..., by, A1, L(2),
and z to imply

k Z
T(z) > z a;b;*1,L(z)z? (1 + j 253 du — C2§£Z)> + g(2).

i=1

Recall that

aibip =1

Nl

i=1

by definition of the Akra-Bazzi exponent, p, of R. Therefore,

- jza(u) o €29(2)

T(z) > AlL(z)zp< ) u e >+g(z)

Xo

= LL(2)(A2) — ,9(2)) + 9(2)
= LL(2)A(z) + (1 — Alch(z))g(z).

Recall that 0 < A; < 1/(2¢,) and L(z) < 2, s0 1,¢,L(z) < 1. Non-negativity of g
implies
(1 — )llch(z))g(Z) > 0.
Therefore,
T(z) > 1{L(2)A(2).

We now establish an upper bound for T'(z) in the same fashion. Positivity of ay, ..., ax
combines with

T(ri (z)) < AU (ri (z))A (ri (z))
foralli € {1,...,k} and

k
T() = ) (1) +9(2)
to imply =
k
T() < ) adU(r@)AMRE) +9(2)
1.e., =
i » i@ G (u)
T(z) < z aiAZU(ri(z))(ri(z)) (1 + j il du) + g(2).
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26. Upper and Lower Bounds for Solutions

Lemma 25.3 implies
U(ri (z))(ri (z))p < bfzp U(z)

for each index i. Then positivity of a4, ..., ax, and A, combines with non-negativity of
the integrand to imply

k

ri(2)
T(z) < z a;A;b?zPU(z) (1 + j Z}Elg du) + g(2),

i=1

1.e.,
k

T(z) < Z aibfle(z)zp (1 + jz 253 du — jz Ggg du) + g(2).

i=1 i(z) u

The defining inequality for ¢; combines with positivity of a,, ..., ax, by, ..., b, 15, U(2),
and z to imply

k Z
T(z) < Z a;b;*,U(z)z? (1 + j zg? du — Cl‘z}gz)> + g(2).

i=1 *o

We conclude from

-

aibip =1
i=1
that
2G(u) c19(2)
T(z) < A,U(2)zP (1 + jx ey du— 1Zp +9(2)
0

= LU@)(A@) — c19(2) + 9(2)
= LU(2)A(2) + (1 - )lzclU(Z))g(z).

Recall that A, = 2/¢; > 0and U(z) > 1/2, s0 A,c,U(z) > 1. Non-negativity of g
implies
(1 — AzclU(z))g(z) <0,
SO
T(2) < L,U(2)A(2).

Therefore,n + 1 € S*. We conclude that S* = S. Letx € I,so x € I, forsome a € S.
Then a € S§*, so

ML(x)A(x) < T(x) < L,U(x)A(x)
as claimed.
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26. Upper and Lower Bounds for Solutions

As promised in Section 20, we now prove Lemma 20.8. For convenience, we repeat the
statement:

Lemma 20.8. Let € > 0. If R is an admissible recurrence that satisfies the modified
Leighton hypothesis relative to &, then R has a unique solution T, which satisfies the
strong Akra-Bazzi condition relative to R and g for each tame extension g of the
incremental cost of R.

Proof. Let I be the recursion set of R, and define L, U: [inf1, ) —» R* as in Lemma
25.3, which implies
U(x) <1<L(x)

for all x € I. Let g be any tame extension of the incremental cost of R. (There exists a
tame extension by definition of an admissible recurrence.) Let A: - R* be the Akra-
Bazzi estimate for R relative to g. Lemma 26.1 says R has a unique solution T and there
exist positive real numbers 4; and 4, such that

ML(x)A(x) < T(x) < 2,U(x)A(x)
forall x € I, so

MA(x) < T(x) < A,A(x)

for all such x. Thus T satisfies the strong Akra-Bazzi condition relative to R and g. O
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This section contains results used by the proof of Lemma 20.7. We start with some
minor observations.

Lemma 27.1. If @ < r < (8 are real numbers, then there exists u € (0,1) such that

l+at<(1+t)" <1+pt
and

1-pt<(1-t)"<1—at
forall t € (0,u).

Proof. Define the differentiable function f: R* - R* by f(x) = x",s0 f'(1) =r.
Since a < f'(1) < B, there exists u € (0,1) such that

(1+t1)5_f(1)<

a<f(1—t)—f(1)<

—t

0(<f

B

and

B

forall t € (0,u), so

fD+at<f(A+t)<f(A)+pt
fO=-pt<fl-t)<f(1)—at

and

for all such t. (Of course, 1+ t,1 —t € domain(f).)

p, b, &, 8, and pu. For the remainder of this section, p, b, and ¢ are real numbers such
that
0<bxk1
and
e > 0.

1 (%)
@)

In addition,
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27. Preliminaries to Lemma 20.7

and
5= max{,u, el/b}.

Observe that 1/(1 —b) > 1,and 1/(1 + &) > 0, so

(L)(l_ie) > 1

1-b

Lemma 27.2. § > e/b.

Proof. The differentiable function f: R — R defined by

ft) =et —et

satisfies (1) = 0, while its derivative, t — et — e, is positive on (1, ). Therefore,
f(t) >0 forall t > 1. In particular,
el/h s %
b
The lemma follows from
§>el/b,

A, B, and C. In this section, A, B, and C are real-valued functions on (&, ) defined by

1
Ax) = p )
10g£/2 (bx + bngx)
B(x) = Tog/Zx’
and
o) = —
=% log'*¢€ x

Lemma 27.3. If x > §, then
0<B(x)<Ax) <1
and
0<C(x)<1.

Proof. By definition, § > e'/? and b € (0,1), so x > e'/? > e and
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logx >1/b > 1.

Positivity of € implies each element a of {¢,&£/2,1 + €} is positive and satisfies
log® x > 1. In particular, B(x) > 0. Positivity of b combines with log® x > 1 and
logx > 1/b to imply

blog'*¢x > blogx > 1,
so0<C(x)<1. Let

t=bx+logl—+£x.

Positivity of x and log!*€ x implies t > bx. Lemma 27.2 combines with x > § and
b > 0toimply bx > bd > e. Thent > e and logt > 1. Positivity of €/2 implies
log&’2t > 1,0 A(x) < 1.

By definition, x > § > u > e, sologx > logu > 0. Positivityof 1 + cand 1 — b
combines with the definition of u to imply

1
1 1+¢& 1 1+¢& — .
og "t x >log "t u (1—b)>0
Now
b+ ! <1
10g1+£x ’

which combines with positivity of x to imply t < x. Then

0 < log??t < log¥/2 x
follows from logx > logt > 0 and € > 0. Therefore, B(x) < A(x). O
We observe from the proof Lemma 27.3 that the definitions of A, B, and C as real-valued
functions are valid. The logarithms that appear in the definitions are positive real
numbers, so the required powers of the logarithms represent positive real numbers. All

denominators that appear in the definitions are positive and therefore non-zero.

Lemma 27.4. If x > 6, then

1+ A(x)

1780 — 1+ (A(x) = B(x))(1 - B(x)) Z)(B(x))zn_

Proof. Lemma 27.3 implies 0 < B(x) < 1, so

14 A(x) N n
TB(X) = (1 +A(X));(—B(X))
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-1+ i(—B(x))n + A(x) i(—B(x))n
et =
1+ Z (=(B@)™" + (B@)™) + Aw) Z ((BG)™ - (B&)™)
=1+ ((B(x))2 —B(x) + A(x) — A(x)B(x)) i(B(X))Zn
=
=1+ (A —B@®)(1-B@)) i(B(x))Z”.
7=

Lemma 27.5.
A(x) = B(x)
oe C(x)

Proof. Recallthat§ > u > e. Forallx > §, wehavex > u > e, i.e.,
logx > logu > 1,

which combines with € > 0, b € (0,1), and the definition of u to imply

1

x>log1+£u=(1_b)>1.

1+¢

log
For each such x,

1
<1
b<b+ oy <

and

1
logb < 10g<b+10g1—+£x) < 0.

Define A: (6, ) — R by
Alx) =

1
log (b + logl+e x)|

|logb| > A(x) >0

forall x > 6. Then

and
1

AW = logx — @)

for each such x, so
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AW =BG _ 1 1
C(x) = (b log™*x) ((logx — A1)z logé/2 x)

log®/? x — (logx — A(x))£/2>

= (b log'** x) ( (loge/Z x)(logx — A(x))E/?

For all x > §, Lemma 27.2 and b € (0,1) imply

e
logx > logE =1-—logh=1+|logh| > 1+ A(x),

and hence
logx > logx — A(x) > 0.

Now positivity of b, &, and log x imply

A(x) — B(x)
C(x)

log®/? x — (logx — /'l(x))e/2>

> (b log!*¢x) ( log® x

= (blogx) (logf/2 x — (logx — l(x))g/z)

_ (b log™*5 x) (1 _ <1 ~ ﬁ)(gi>e/z>

for each such x. Positivity of € implies

tlirn A(t) = |loghb|,

SO
A(t
lim (—) =0
t-ologt

Then Lemma 27.1 implies there exists y > § such that

A0 8/2<1 £ A(x)
log x 3logx

for all x > y. Positivity of b and log x implies

A(x) — B(x) 148 VEA()  beA(x) log/% x
C(x) > (bl 2x)glogx B 3

for each such x. We conclude from
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beA bellogb
lim eAx) = llog | >0
x-0o 3 3

and (recalling that logx > 1 and € > 0)

lim log®/? x = oo
X—00

that
A(x) = B(x)
oe C(x)

For convenience, we include the following simple observation:

Lemma 27.6.

_(B®) . (A -B®)(1-BX)
Iim T dm 00 =

Proof. Observe that
(B(x))2 _ blog'*®x

= = blogx,
C(x) log® x 08 *
so positivity of b implies
2
lim (B(x)) =00
xoeo C(x)

Positivity of € implies
lim B(x) = 0,
X—00

which combines with 27.5 to imply

- (A -BW)(1-BW)
Jim Cx0) =

The next lemma corresponds to part 5(a) of the technical condition for a single index i.

Lemma 27.7. There exists v = 6 such that

(1-c@)"'(1+4)) > 1+ B
for all x > v.

Proof. Letq > |p|,so q > 0. Lemma 27.1 implies there exists u > 0 such that
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1-0Pl>1—qt
for all t € (0,u). The functions A, B, and C are positive by Lemma 27.3. Observe that

lim C(x) = 0.

X—00

There exists y = 6 such that C(x) € (0,u) forall x > y, so

(1-c)? >1-qc)
for all such x. Since g > 0 and hence 1/q > 0, there exists z = § such that C(x) < 1/q

forall x > z,s0 0 < qC(x) < 1 for each such x. Lemma 27.6 and positivity of C imply
there exist s,t = § such that

2
(B(x)) > qC(x)
for all x > s and

(A(x) - B(x))(l - B(x)) > qC(x)

for all x > t. Define v = max{s, t, y, z}, and assume x > v. Lemma 27.4 implies

1+ A(x)

1Y) ~ 1+ (A(x) = B()(1- B(x));(B(x))zn-

Lemma 27.3 implies 0 < B(x) < 1, so the infinite series above converges to a positive
real number. The inequality x > z implies 0 < qC(x) < 1, which combines with
x > max{s, t} and positivity of the convergent series above to imply

1+ A(x) N
T 1+qC(x);(qC(x)) Z(qC(x)) e

Now the inequality x > y and positivity of A(x), B(x), and 1 — qC(x) imply

(1-c)"'(1+4®) > (1-qCc@)(1+A®) > 1+ B(x),

which proves the claim. O

For sake of completeness, we include the following corollary, which corresponds to a
strict version of the condition 4(a) of Theorem 2 of [Le] (for a single index i).

Corollary 27.8. There exists v > § such that

(1-c@)’(1+A4®) >1+Bx)
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forall x > v.

Proof. By Lemma 27.7, we may assume p # |p|, i.e., p < 0. Let v = § and suppose
x> v,i.e. x> 0,50 x is an element of (§, ), the domain of 4, B, and C. Lemma 27.3
implies

A(x) >B(x)>0

and
0<Clx)<1,
SO
(1-c)’ >1
and
1+A(x)>14+B(x)>0.
Therefore,

(1-c@)’(1+4®) > (1 -c@)’(1+Bx)) >1+Bx).

The next lemma corresponds to part 5(b) of the technical condition for a single index i.

Lemma 27.9. There exists w = & such that

(1+c@)"'(1-40)) <1-Bw®)
for all x > w.

Proof. Letq > |p|,so q > 0. Lemma 27.1 implies there exists u > 0 such that
1+)P <14qt
for all t € (0,u). The function C is positive by Lemma 27.3. Observe that
lim C(x) = 0.
X—00
There exists y = 6 such that C(x) € (0,u) forall x > y, so

(1+c@)” <1+ qc0)
for all such x. Lemma 27.5 and positivity of the function C imply there exists z = § such
that
A(x) > B(x) + qC(x)

for all x > z. Letw = max(y, z) and assume x > w. Lemma 27.3 says

0<B(kx)<A(X) <1,
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which combines with x > z to imply

1+qC(x) > . ® .
T8y — L+ (B@+aC®) ;(B(x)) < 1+ A ;(A(x))

1

T1-40)
and

(1+gC(x))(1-A(x)) < 1-B(x).

We conclude from x > y and positivity 1 — A(x) that

(1+c@)"(1-aw) < (1+qCx))(1-A®) < 1-B).

For sake of completeness, we include the following corollary, which corresponds to a
strict version of condition 4(b) of Theorem 2 of [Le] (for a single index i).

Corollary 27.10. There exists w = § such that

(1+c@)’(1-4®) <1-Bx)
for all x > w.

Proof. By Lemma 27.9, we may assume p # |p|,i.e.,p < 0. Letw = 4. Ifx > w, i.e.,
x > 6, then Lemma 27.3 implies
B(x) <A(x) <1
and C(x) > 0, so
0<(1+cw) <1,

0<1-A(x) <1-B(x),

and
(1+c)’(1-4a@) <(1+Cc@)’(1-B®) <1-BX).
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As promised in Section 20, we now prove Lemma 20.7. For convenience, we repeat the
statement:

Lemma 20.7. If
(1) k is a positive integer,
(2) by, ..., by are real numbers such that 0 < b; < 1 for each i,
(3) p is a real number, and
(4) >0,

then there exists a real number x,, such that (x, by, ..., by, b, €) satisfies the technical
condition.

Proof. Define real numbers yy, ..., g, 84, ..., 6x € (e,0) by

<(1_1bi)(1—+s)>
ui=e

8; = max(y;, e'/bt),

and

Lemma 27.7 implies there exist real numbers vy, ..., v, with v; = 6; foralli € {1, ..., k}
such that for each such i the inequality

( 1 Ipl 1 1
1-——) [1+ >1+4+———
b; logl+e x) x loge/2

0108 log#/2 (bix + W) 08T

is satisfied for all x > v;. Lemma 27.9 implies there exist real numbers wy, ..., w;, with
w; = 6; forall i € {1, ..., k} such that for each such i the inequality
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( 1 Ipl 1 1
1+—) [1- <1——
b; logl+e x) x loge/2

0108 log#/2 (bix + W) o8

is satisfied for all x > w;. Define v = max{v,, ..., vx}, w = max{wy, ..., w; }, and
z =),

Let x, be any real number satisfying

xo > max{v,w, z}.
We claim

(%0, b1, wour by, 0, )
satisfies the technical condition. The tuple above is a (k + 3)-tuple with k a positive
integer as required. Conditions (2) and (4) of the proposition are parts (1) and (2),
respectively, of the technical condition. Observe that

v>v; > 6 > el/bi

forall i € {1, ...,k}, so x, > e/i for each such i, which is part (3) of the technical
condition. Also observe that

log®/2 x, > log/? z = 2,
so part (4) of the technical condition is satisfied. The inequalities x, > v and x, > w

imply x > v and x > w for all x > x,, so x > v; and x > w; for each such x and all
i € {1, ..., k}. Therefore, the final part (5) of the technical condition is satisfied.
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Suppose T is a solution of a divide-and-conquer recurrence
R = (D, I, ay, ..., g, le ey bk’le 9Ir, hl' ey h’k)

with base case fz, incremental cost gg, and unbounded recursion set I. Let

Q = (D,I, ay, ..., Ay, bll ""bkllegQ’h’ll ""h'k)

where fj (like fz) is a ©(1) real-valued functions on D\I, and g, (like gg) is a non-
negative real-valued function on I, so Q is a divide-and-conquer recurrence with base
case f, and incremental cost g,. The recurrences R and Q are identical apart from their
base cases and incremental costs, which may be different.

Suppose go = O(gg) and S is a solution of Q. It is tempting to conclude that S = 0(T)
as claimed in the examples on page 2 of [Le]. Lemma 29.1 and Corollary 29.2 will
justify the conclusion under certain mild conditions. Those propositions also show that
other asymptotic relationships between incremental costs are often inherited by solutions.
Lemma 29.5 and Corollary 29.6 are analogous results that discard the requirements of a
©(1) base case and a non-negative incremental cost.

Section 13 demonstrates that the conclusion is not always justified, even if f, = fz and
9do = 9gr- When x, = 10000, the admissible recurrences defined there are proper, i.e.,
they are divide-and-conquer recurrences; if the base case is constant with range {100},
there is a constant solution T with range {100}. However, the recurrence is infinitely
recursive and has other solutions that are unbounded on every open subset of the
recursion set. In particular, S # ©(T) for each such solution S.

We now provide a finitely recursive counterexample:

Example. We will compare two divide-and-conquer recurrences. The first is the
admissible recurrence
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29. Solution Insensitivity to Base Case and Incremental Cost

1, foril<x<?2
= X
T(x) T (E) + x, forx > 2

with incremental cost g: (2,0) —» R* defined by g(x) = x for all x € (2, ). Letd be
the recurrence’s depth-of-recursion function. The bounded depth condition is satisfied
because

d(x) < |log, x|

for all x € [1, 00) (with equality except when x # 1 is a power of 2). The recurrence’s

Akra-Bazzi exponent is zero. Corollary 20.12 implies the recurrence has a unique
solution, T, which is positive and satisfies

T(x) =0 (xo (1 + jx u“:‘l du)) =0 (1 + jxdu> =0(kx—1) =0(x).

A simple inductive argument on the depth of recursion shows that T (x) < 2x for all
x € [1,00). The second divide-and-conquer recurrence is

1, forl<x<2

S(x) = X 1
S(E)+x+xT2, forx > 2

with incremental cost f: (2,0) —» R* defined by

FO) =x+

for all x € (2, 00). The two recurrences differ only in their incremental costs, so the
second recurrence is also finitely recursive. Corollary 8.5 implies the second recurrence
has a unique solution, S, which is positive.

Observe that f(x) = 0(x), i.e., f = 0(g). We will show that for each pair of real
numbers @ > 0 and ¢ > 1 (so [c, ») is contained in the common domain of S and T)
there exists z > ¢ such that S(z) > aT(z). Therefore, S # O(T), which implies

S + 0(T).

Define f = max{a, 1/8}, m = max{c, 2}, n = [log, m], and

_2n+ 1
z= 85"
Then
n =>log,m >log,2 =1,

cE<MS2M<z< 2+ 1 < 2™
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29. Solution Insensitivity to Base Case and Incremental Cost

and

1 1 1
S(z) = S<2+m) > f<2+m) = 2+2n+2‘8+2n+2'8 > 2n+2’3 > 2[z.

We conclude from 8 = a and z > 0 that S(z) > 2az. Recall that T(z) < 2z, so
S(z) > aT(z) as required.

We note that the function f is unbounded on the interval (2,3), so Corollary 2.23 implies
f does not have polynomial growth. Lemma 2.2(2) implies f has no polynomial-growth
extension, so the recurrence satisfied by S is inadmissible.

Lemma 29.1. Let

Q = (D, I, ay, ..., g, bll ...,bk,fQ, gQ’h’ll ""h'k)
and

R = (D,I, al, ...,ak, le ...,bk,fR,gR, hl' ...,hk)

be divide-and-conquer recurrences that satisfy the bounded depth condition and are
identical apart from their base cases, f, and fg, which may differ, and their incremental
costs, go and gg, which may differ. Assume the recursion set, I, is unbounded. Let S
and T be the solutions of Q and R, respectively. Then:

(1) If go = 0(gr) and g, is bounded on bounded sets, then there exists a positive
real number u such that S(x) < uT(x) for all x € D. In particular, S = O(T).

(2) If g = Q(gr) and gy, is bounded on bounded sets, then there exists a positive
real number A such that AT (x) < S(x) forall x € D. In particular, S = Q(T).

(3) If go = ©(ggr), and each of g, and g is bounded on bounded sets, then there
Q Q
exist positive real numbers A and u such that AT (x) < S(x) < uT (x) for all
x € D. In particular, S = O(T).

Proof. Corollary 8.5 implies Q and R have unique solutions S and T, respectively, as
implicitly claimed. Furthermore, S and T are positive. By definition, g, and gg, are
non-negative real-valued functions on /.

By definition, I has a positive lower bound and is a non-empty upper subset of the
domain, D, of Q and R. By hypothesis, I is unbounded, so sup D = sup [ = oo.
Therefore, asymptotic notation is defined for S, T, gq, and gg.

We now prove part (1). Suppose go = 0(gr), i.e., there exist a positive real number «
and a non-empty upper subset / of I such that g, (1) < agr(r) forallr € J. Also
suppose g, is bounded on bounded sets. Corollary 9.4 implies S is locally ©(1) and each
restriction of T to a bounded subset of its domain, D, has a positive lower bound.
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Positivity of I implies positivity of I\J. Each element of the non-empty set J is a finite
upper bound for I\]. Therefore, I\\] is a bounded subset of D, which implies S is ©(1) on
I\J and infT(I\J) > 0. If I # J, so I\J is non-empty, then inf T (I\J) and sup S(I\J) are
positive real numbers and we define

_supS(1\)) _
~infT(\))’

otherwise, define f = 1. Now f is a positive real number and S(u) < BT (u) for all
u € I\J (the inequality is vacuously satisfied if [ = J).

By definition, f, and f are ©(1). If D # I, so the domain, D\I, of f, and f is non-
empty, then inf fz and sup f, are positive real numbers, and we define

_sup fo _
inf fp ’

otherwise, define y = 1. Now y is a positive real number and f, (w) < yfz(w) for all
w € D\I (the inequality is vacuously satisfied if D = I).

Define
u = max{a, B,v},

50 i is a positive real number. Furthermore, go (1) < ugr(r) forallr € J and
S(u) < uT(u) forall u € I\J. We also have

Sw) = fow) < pufr(w) = uT(w)
for all w € D\I. Therefore, S(z) < uT(z) forall z € D\J.

Let d be the depth-of-recursion function for Q relative to D\J. (since @ and R have the
same domains and dependencies, d is also the depth-of-recursion function for R relative
to D\J.) Satisfaction of the bounded depth condition by Q implies Q is finitely recursive
relative to D\ I, which is contained in D\J. Then Lemma 8.3 implies Q is also finitely
recursive relative to D\/, i.e., d(x) € N forall x € D. Let

A={n€eN:S(y) <uT(y)forally € Dwithd(y) < n}.

By definition,
D\J ={t € D :d(t) =0},

so0 € A. Letn € A and suppose y € D withd(y) <n+ 1. Ifd(y) # n+ 1, then
d(y) < n, which implies S(y) < uT(y). Ifinstead d(y) =n+ 1, thend(y) > 0, i.e.,
y € J. Furthermore,

d(by + hi(y)) <n
forall i € {1, ..., k}. Therefore,
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k k
S(y) = ZaiS(biy+hi(y))+gQ(y) < pu- ZaiT(biy+hi(y))+gR(y) ,

i=1 i=1
ie.,

S(y) < uT(y).

Therefore, n + 1 € A. By induction, A = N, so S(x) < uT(x) forall x € D. In
particular, S = O(T). Part (1) is proved.

We now prove part (2). Suppose go = Q(gg), which implies gg = O(gQ), and assume
gr 1s bounded on bounded sets. Part (1) implies there exists a real number § > 0 such
that T(x) < 86S(x) forall x € D. DefineA =1/68,s0A1 > 0and AT (x) < S(x) for all
x € D. In particular, S = Q(T). Part (2) is proved.

Finally, we prove part (3). Suppose go = 0(gr), so go = 0(gr) and go = Q(gr), and
assume each of g, and gg is bounded on bounded sets. Parts (1) and (2) imply there
exist positive real numbers A and u such that

AT (x) < S(x) < uT(x)
for all x € D. In particular, S = ©(T). Part (3) is proved. O

Equivalence of bounded depth conditions for Q and R. The requirement of Lemma
29.1 that Q and R both satisfy the bounded depth condition is slightly redundant. The
two recurrences have the same domain and dependencies, so they have the same depth-
of-recursion function. In particular, Q satisfies the bounded depth condition if and only if
R satisfies the bounded depth condition.

Incremental costs with polynomial growth. By definition, the recursion set of a divide-
and-conquer recurrence has a positive lower bound. If the incremental cost has
polynomial growth, then Corollary 2.23 implies the incremental cost is bounded on
bounded sets as required by Lemma 29.1.

We now give an interpretation of Lemma 29.1 for integer recurrences:

Corollary 29.2. Let

Q = (D, I, ay, ..., g, bll ...,bk,fQ, gQ’h’ll ""h'k)
and

R = (D,I, al, ...,ak, le ...,bk,fR,gR, hl' ...,hk)

be divide-and-conquer recurrences that are identical apart from their base cases, f, and
fr» which may differ, and their incremental costs, g, and gg, which may differ. Assume
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the recursion set, I, is unbounded and contains only integers. Let S and T be the
solutions of @ and R, respectively. Then:

1) If go = 0(gg), then there exists a positive real number y such that S(n) < uT(n)
Q
for alln € D. In particular, S = O(T).

(2) If g = Q(gr), then there exists a positive real number A such that AT'(n) < S(n)
for alln € D. In particular, S = Q(T).

(3) If go = ©(gr), then there exist real positive real numbers A and p such that
AT(n) < S(n) < uT(n) foralln € D. In particular, S = O(T).

Proof. Lemma 21.1 implies Q and R have unique solutions S and T, respectively, as
implicitly claimed. Furthermore, Q and R satisfy the bounded depth condition. Since [ is
a set of integers, each bounded subset of [ is finite and is therefore mapped to finite sets
of real numbers by g, and gg. Each such finite set is bounded. The proposition follows
from Lemma 29.1. O

Corollary 29.3. Let R be a divide-and-conquer recurrence that satisfies the bounded
depth condition and has low noise and an unbounded recursion set. If T is the solution
of R, then

T(x) = Q(xP)

where p is the Akra-Bazzi exponent of R.
Proof. Corollary 8.5 implies R has a unique solution T as implicitly claimed. Let

S = (D,I, ay, ..., dg, bll ...,bk,f,Z, h‘ll ""h’k)
where
R = (D,I, aq, ...,ak,bl, ...,bk,f,g,hl,...,hk)

and z: I - {0}, i.e., S is the divide-and-conquer recurrence that is identical to R except
perhaps for its incremental cost, which is identically zero. In particular, S inherits low
noise, an unbounded recursion set, Akra-Bazzi exponent p, and satisfaction of the
bounded depth condition from R.

The identically zero function z*: (0,0) — {0} is a tame extension of the incremental
cost, z, of S. Existence of a tame extension of z combines with low noise to imply S is
an admissible recurrence. Corollary 20.12 implies S has a unique solution, U, which
satisfies the strong Akra-Bazzi condition relative to S and z*. Since the recursion set of S
is unbounded, the weak Akra-Bazzi condition is also satisfied, i.e.,

U(x) =0| xP (1 + _[xip(i) du)
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where x, = infl. Since z* is identically zero,
U(x) = 0(xP).

The incremental cost, g, of R is a non-negative real-valued function on the (unbounded)
recursion set I by definition of a divide-and-conquer recurrence, so g = Q(z). Since z is
bounded on bounded sets, Lemma 29.1 implies T = Q(U). Therefore,

T(x) = Q(xP)
as claimed. O

Corollary 29.4. Let R be a divide-and-conquer recurrence that has low noise and an
unbounded recursion set that contains only integers. If T is the solution of R, then

T(n) = Q(nP)
where p is the Akra-Bazzi exponent of R.

Proof- Lemma 21.1 implies R satisfies the bounded depth condition and has a unique
solution T as implicitly claimed. The proposition follows from Corollary 29.3. O

Definition. A real-valued function f on a set S of real numbers is asymptotically locally
©(1) if sup S = oo and the restriction of f to some non-empty upper subset of S is locally
0(1).

Of course, every locally ©(1) function on a set S of real numbers with sup S = oo is
asymptotically locally ©(1) because S is an upper subset of itself and is non-empty
(sup @ = —o0).

We now consider the effect of relaxing the requirements that the base case is ©(1) and
the incremental cost is non-negative.

Lemma 29.5. Let
R = (D, I, a4, ...,ak, bl' ...,bk,f,g, h’l’ ""h’k)

be a divide-and-conquer recurrence that satisfies the bounded depth condition and has
low noise and an unbounded recursion set /. Assume the incremental cost, g, is bounded

on bounded sets.

Letry, ..., 1%: I = D be the dependencies of R, i.e., 1;(z) = b;z + h;(z) for all z € I and
alli € {1, ...,k}. Let T be the solution of R.

Let f* and g* be real-valued functions on D\ and I respectively. Define a real-valued
function T* on D by the recurrence
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f*(x), for x € D\I
k

Z aiT*(ri(x)) + g*(x), forx € I.

i=1

T*(x) =

If g* is asymptotically non-negative with g* = 0(g), and T* is asymptotically locally
0(1), then T* = O(T).

Proof. Lemma 9.4 implies R has a unique solution, T, as implicitly claimed.
Furthermore, T is locally ©(1). Finite recursion of R implies finite recursion of the
second recurrence, which has a unique solution T* by Lemma 8.2.

Corollary 9.9 implies there exists a non-empty upper subset Y of [ and real numbers
0 < a < f < 1such that

ay <1(y) < By

forally € Yandalli € {1, ..., k}. The setY is an upper subset of D because I is an
upper subset of D.

By hypothesis, there exists a non-empty upper subset U of D such that the restriction of
T* to U is locally ©(1). There also exists a non-empty upper subset W of I and positive
real numbers A, and A, such that

Mg(2) < g7 (2) < Ag9(2)

forall z € W, so g* is bounded on bounded subsets of W. Observe that W is also an
upper subset of D. Define
E=YnUnWw,

so E is a non-empty upper subset of D. Furthermore, E is contained in the subset I of D,
so E is an upper subset of I. Let
infE
J=En(T=)
a

so / is a non-empty upper subset of E and /. Furthermore,

inf/ > infE > infl > 0
and supJ = sup/ = oo. Observe that

inf(E\J) = infE > 0.

Furthermore,

sup(E\J) <inf] < oo
because / is a non-empty upper subset of E. Therefore, T and T* are (1) on E\\J. Also
observe that r;(E) € r;(I) € D and
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r;(J) € ri(E) N (infE,©) € D N (infE,©) = EN (infE,»©) CE
for each index i, so E contains 7;(J) for each such i. Therefore,

Q = (E,],al,...,ak,bl, ""bk’TlE\]’glj'hllj’ 'hklj)
and

S = (E']'al’""ak’bll""bk'T*lE\]’g*lj'hllj’""h’klj)

are divide-and-conquer recurrences that satisfy the ratio condition. Lemma 9.6 implies Q
and S satisfies the bounded depth condition and have unique solutions, which are T |z and
T*|g by inspection. Lemma 29.1 implies T*|g = O(T|g), i.e., T* = O(T). O

We now give an interpretation of Lemma 29.5 for integer recurrences:

Corollary 29.6. Let
R = (D, I, aq, ..., Ag, bl' ...,bk,f,g, h’l’ ""h’k)

be a divide-and-conquer recurrence that has low noise and an unbounded recursion set [
that contains only integers.

Letry, ..., 1%: I = D be the dependencies of R, i.e., 1;(z) = b;z + h;(z) for all z € I and
alli € {1, ...,k}. Let T be the solution of R.

Let f* and g* be real-valued functions on D\ and I respectively. Define a real-valued
function T* on D by the recurrence

f*(n), forn € D\I
K
r(n) = Z aiT*(ri(n)) + g*(n), forn € I.

i=1

If g* is asymptotically non-negative with g* = 0(g), and T* is asymptotically positive,
then T* = O(T).

Proof- Lemma 21.1 implies R satisfies the bounded depth condition and has a unique
solution T as implicitly claimed. Finite recursion of R implies finite recursion of the
second recurrence, which has a unique solution T* by Lemma 8.2.

Each bounded subset S of the domain, I, of g is a finite set of integers, so g(S) is a finite
set of real numbers and is therefore bounded. Since I is a non-empty upper subset of D,
asymptotic positivity of T implies there exists a non-empty upper subset J of I such that
the restriction of T* to J is positive. Each bounded subset W of ] is finite, so T*(W) is a
finite set of positive real numbers, which implies T* is ©(1) on each such W, i.e., the
restriction of T* to J is locally ©(1). Therefore, T* is asymptotically locally @(1). The
proposition follows from Lemma 29.5. O
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Bounded recursion sets. For sake of completeness, we now provide an adaptation of
Lemma 29.1 for recurrences with bounded recursion sets. Of course, asymptotic
relationships (at +o0) between solutions and between incremental costs are meaningless
when the recursion set is bounded. Lemma 29.1 refers to boundedness of incremental
costs on bounded sets. With a bounded recursion set, that property is equivalent to global
boundedness of incremental costs.

Lemma 29.7. Let Q and R be divide-and-conquer recurrences that satisfy the bounded
depth condition and have bounded recursion sets. Let Dy, gq, S and Dg, gg, T be the

domains, incremental costs, and solutions of Q and R, respectively. Then:

(1) If g4 1s bounded, then there exists a positive real number u such that
S(x) < uT(x) forall x € Dy N Dp.

(2) If gg is bounded, then there exists a positive real number A such that
AT (x) < S(x) forall x € Dy N Dg.

(3) If go and gg are bounded, then there exist positive real numbers A and u such that
AT (x) < S(x) < uT(x) for all x € Dy N Dpg.

Proof. Corollary 8.5 implies Q and R have unique solutions S and T, respectively, as
implicitly claimed. Let I, and I be the recursion sets of @ and R respectively.

We now prove (1). Suppose g, is bounded. Corollary 9.4 implies S is locally ©(1) and
T (Ig) has a positive lower bound y.

By definition, I is non-empty, so T(Ig) is a non-empty set of real numbers, which
implies y is finite, i.e., real; furthermore, T (Dg\Ig) has a positive lower bound z. Of
course, finite recursion of R implies Dg\I is non-empty, so T (Dg\Ig) is non-empty and
z is finite, i.e., real. Let @ be the minimum of y and z, so « is a positive real lower bound
forT.
By definition, I, is a non-empty upper subset of Dy, so

sup Dy = sup [y < oo.
Then Lemma 9.1 implies S = (1), so S has a finite, i.e., real upper bound . (Recall
our definition in Section 1 of ®(1) on a set with a finite upper bound.). The domain D,

of S contains [, and is therefore also non-empty, so positivity of S implies g > 0.

Define the positive real number

SO

286



29. Solution Insensitivity to Base Case and Incremental Cost

Sx) < B < ﬁ'%@ = puT(x)

forall x € Dy N Dg. Part (1) is proved.

We now prove (2). Suppose gg 1s bounded. Part (1) implies the existence of a positive
real number § such that

T(x) < 6S(x)
forall x € Dy N Dg. Then

AT (x) < S(x)

for all such x where A is the positive real number 1/8. Part (2) is proved.

Finally, (3) follows from (1) and (2). O

Lemma 29.7 has a simple interpretation for integer recurrences:

Corollary 29.8. Let Q and R be divide-and-conquer recurrences with bounded recursion
sets that contain only integers. Let Dy, S and Dg, T be the domains and solutions of Q

and R, respectively. Then there exist positive real numbers A and p such that

AT (x) < S(x) < uT(x)
Forall x € Dy N Dy.

Proof. Lemma 21.1 says Q and R satisty the bounded depth condition; furthermore, Q
and R have unique solutions S and T, respectively, as implicitly claimed. The recursion
sets of Q and R are finite because they are bounded and contain only integers. Therefore,
the incremental costs of Q and R have finite ranges, which implies the incremental costs
are bounded. The proposition follows from Lemma 29.7. O
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By definition, an admissible recurrence has low noise. If the recursion set is unbounded,
Lemma 20.1 implies the recurrence satisfies Leighton’s noise condition relative to some
€ > 0 on some non-empty upper subset / of the recursion set, i.e.

X
|h; ()| Slogl—J,Ex

forall x € Jand all i € {1, ..., k} where hy, ..., h;, are the noise terms. Theorem 2 in [Le]
assumes satisfaction of Leighton’s noise condition on the entire recursion set.

A remark at the end of [Le] says “It is worth noting that the x/log!*¢ x limit on the size
of |h;(x)| is nearly tight, since the solution of the recurrence

0(1), forl <x<x,

TC) =121 (f +

> logx)' for x > x,
1S
T(x) = xlog®W x,

which is different than the solution of @(x) for the recurrence without the x /log x term.”
The condition x, = 1 is obviously intended.

The semi-divide-and-conquer recurrence above violates our definition of low noise and is
therefore inadmissible. If x, > 2, the recurrence without the x/log x term is an
admissible divide-and-conquer recurrence that satisfies the ratio condition; Corollary
20.13 implies existence of a unique solution 7', which satisfies the strong Akra-Bazzi
condition; the Akra-Bazzi exponent is 1 and the incremental cost is 0, so, T(x) = 0(x)
as claimed. If x, € [1, 2), the recurrence without the x /log x term is ill posed with no
solution: there exists y € (x,, 2); the recurrence says T (y) = 2T (y/2), but y/2 is not
contained in [1, ), which is the recurrence’s intended domain.
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30. Noise Bounds

We shall consider the interpretation of Leighton’s asserted solution to the original
recurrence and prove its validity when x, > e? (i.e., the recurrence is proper). There is
more to the story when x, < e?. For the remainder of this section, let

a =e V3 x~ 2.07934
and define the function
B:(1,00) - (1, )

by
X X
B(x) == :
() 2 * log x

The implicit assertion that B(x) > 1 for all x > 1 is easily justified: The quantities x /2
and x/log x are positive for each such x, so B(x) > max(x/2,x/logx). If x > 2, then
x/2=1. If1 <x < 2,thenx/logx > x/log2 > x > 1.
We list some simple facts about B:
Lemma 30.1.

(1) B(e?) =e?,B(x) > x forall x € (1,e?),and B(y) < y forall y € (e?, ).

(2) B|(1,qq is strictly decreasing, and B[4 ) is strictly increasing. In particular,
B(x) = B(a) > a forall x € (1, ).

(3) The intervals [t, e?), (t,e?) and (u, ©) are B-invariant for all t € [a, €?) and all
u €[1,e?].

(4) Forallx > 1,
lim B"(x) = e2.
n—->oo

Proof. (1) follows from loge? = 2,logx < 2 forall x € (1,e?), and logy > 2 for all
y > e?. The derivative of B is

log? x + 2logx — 2

)

2log? x
which has «a as its only root (in the domain of B). Since a is the unique critical point of
B, and

lim B(x) = lim B(x) = oo,
x—>1F xX—00

we conclude that B|(q o is strictly decreasing, and B[4, ) is strictly increasing, so
B(x) = B(a) forall x € (1,). (1) implies B(a) > a. Thus (2) holds.

Ifa <t <x<e?then(1)and (2) imply x < B(x) < B(e?) = e?, so the intervals
[t,e?) and (t, e?) are B-invariant. Suppose u € [1,e?]and y > u. If y > e?, then (1)
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30. Noise Bounds
and (2) imply B(y) > B(e?) = e? > u. Ifinstead y < e?, then (1) implies
B(y) = y > u. Thus (u, ) is B-invariant, and (3) holds.

B-invariance of (1, ) implies the real-valued function B™ is defined on (1, c0) for all
non-negative integers n. The exponent n refers to composition of functions, not
exponentiation of function values, and B° is the identity map on (1, o).

If x = a, then (1) and (3) imply the sequence

x, B(x), B?(x), B*(x), ...
is increasing if x < e?, stationary if x = e?, and decreasing if x > e?2. In particular, the
sequence is monotonic. By (3), the sequence is contained in the closed and bounded

interval I = [min{x, e?}, max{x, e?}]. The sequence converges to a limit contained in I,
which is contained in the domain of B. Continuity of B implies

B (1im B"(x)) = lim B™1(x) = lim B"(x).
n—-oo n—oo n—-oo
Thus (1) implies
lim B"(x) = e2.
n—-o0o

Finally, suppose 1 < x < a, so B(x) > a by (2), and

lim B™(x) = lim B™*'(x) = lim B™(B(x)) = e?.

n—oo n—oo n—oo
Infinite recursion. Suppose 1 < x, < e?. The interval (x,, ©) is B-invariant by
Lemma 30.1(3). (In particular, the recurrence has infinite depth of recursion at each
X > X,.) We may define a solution of the recurrence with T(x) = 0 for all x > x,. The
restriction of T to [1, x,] can be any function that is @(1). Observe that

T(x) # xlog®® x.

The next proposition establishes the existence of other solutions when 1 < x, < e?.
However, all solutions satisfy

T(e?) = 2T(B(e?)) = 2T (e?),
which implies T(e?) = 0.
The proof of the next proposition is similar to Section 13.

Lemma 30.2. Suppose 1 < x, < e? and f:[1,x,] = R. For each real-valued function g
on (xg, o), there exists a function T: [1,00) — R such that T|j; .} = f,
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30. Noise Bounds

TG =21 (; + log x)

for all x > x,, and T agrees with g on some unbounded set.

Proof. Define y = max{a, x,},soy € [a,e?]. Let] = (y,») and S = I\{e?}. Observe
that S € domain(B). Define f = B|s. If y = €2, then S = (e?, ); if y # e?, then
Y € [a,e?) and

S = (y,e?) U (e? ).

Lemma 30.1(3) implies S is B-invariant and is therefore S-invariant. Thus f":S — S is
defined for all non-negative integers n. The exponent n refers to composition of
functions, not exponentiation of function values, and ° is the identity map on S.

Lemma 30.1(2) implies the restriction of B to [a, o) is increasing and is therefore
injective. Then B is injective since S  [a, ). For each non-negative integer n, the
function ™ is injective and has an inverse (f™)~1: f™(S) — S. Define functions f,, for

all integers n by f8,, = f™" whenn > 0, and 3, = (ﬁ'”')_l when n < 0. The function S,
is injective for every integer n.

(If xg < e?,i.e., y < e?, the function f3 is not surjective, so the domain of S~ is properly
contained in S, which is the range of 1. Thus 7! o £~ is undefined, i.e., (871)? is
undefined. Indeed, (B~1)" is undefined for all n > 1. Thus we do not use the notation

p~" for (™))

Define a binary relation ~ on S by y~z if there exists an integer k such that y in the
domain of By, and By (y) = z, which implies z is in the domain of S_;, and B_;(z) = y.
In other words, ~ is symmetric. The relation ~ is also reflexive because S, is the identity
map on S. Now suppose Sy, S, S3 € S such that s; ~s, and s,~s3. There exist integers
m and n such that g,,(s;) = s, and B,,(s,) = s3. (In particular, s; and s, are in the
domains of S, and f3,,, respectively.) Then s; is in the domain of f,,,,, and

Bm+n(S1) = s3, 80 ~ is transitive. Therefore, ~ is an equivalence relation.

Given t € S, Lemma 30.1(3) implies the equivalence class of t is contained in either
(y,e?) or (e?, ). (Of course, (y,e?) = @ ify = e?). Ifi,j € Z such that B;(t) and
p;(t) are defined, Lemma 30.1(1) implies f5;(t) = f;(t) if and only if i = j.

We claim that for each transversal L of ~ (i.e., L € S and L contains exactly one element
of each equivalence class), and each real-valued function A: L — R, there exists a function

Ty: [1,00) — R that satisfies Tj|[1,x,; = f, Tal, = 4, and

X X
Ta(x) = 2T, (E + logx)
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30. Noise Bounds
for all x > x,, i.e. A has an extension to a solution of the recurrence: Each element of S
has a unique representation of the form B, (u) with u € L and n € Z. Define

Alu)
21’1

T(,Bn(u)) =

for each such u and n. Observe that 8, (u) € S = domain(p), so u € domain(B,4+1)
and

A
T (B (W) = 2 2(—”3 = 2T (Be1 () = 2T (B(Bn (w)))

as required. Define Tj;(e?) = 0. Lemma 30.1(1) says B(e?) = e?, so
T(e?) = 2Ty (B(e?)).

We have defined the restriction of Ty to I = S U {e?}. If there exists w > x, such that
w ¢l theny = a,ie I = (a,),s0 B(w) € I by Lemma 30.1(2). Define

T,(w) = 2Ty (B (W)) for each such w. We have constructed a function T with the
required properties. (Furthermore, T is uniquely determined.)

In particular, for each transversal L of ~ there exists a solution T of the recurrence with
Tli1xy) = f and T|, = g|.. We shall prove the lemma by showing the existence of an
unbounded transversal of ~.

Define an independent set to be any subset of S that does not contain more than one
element of any equivalence class. The collection of independent sets is partially ordered
by inclusion. A maximal independent set ¢ must be a transversal. Otherwise, g contains
no elements of the equivalence class of some s € S. Then q U {s} is an independent set
that properly contains g, in contradiction of g’s maximality. (Furthermore, all
transversals are maximal independent sets.)

We claim that the union of a chain (a set totally ordered by inclusion) of independent sets
is also an independent set: Define
v = Jv

YeC

for each chain C of independent sets. Suppose x; and x, are distinct elements of U(C),
so there exist ¢;, ¢, € C such that x; € ¢; and x, € c,. Since C is a chain, either ¢; € ¢,
or ¢, € c¢;. Thus either ¢; or ¢, contains both x; and x,, which implies x; and x, are in
different equivalence classes. Therefore, U(C) is an independent set containing all
elements of C.

Suppose r is an independent set, and let X be the collection of independent sets

containing . Since every chain D € X has an upper bound U(D) € X, Zorn’s lemma
implies X contains a maximal element X*. Since r € X*, any independent set containing
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30. Noise Bounds

X* must also be an element of X. Therefore X* is a maximal independent set, i.e., X" is a
transversal. In other words, every independent set is contained in a transversal of ~.

Let A be the set of non-empty, finite, independent subsets p of S with the property
maxp > |p|. The subset {s} of S is non-empty, finite, and independent for each s € S;
furthermore,

max{s} =s>1=|{s},

so {s} € A. Therefore, A is non-empty. Since each p € A is finite and each equivalence
class is countable, the set
p=|

XEP

is countable where x~ denotes the equivalence class of x. For each p € A there exists v
in the uncountable subset
(max{e?, 1 + maxp}, )

of S such that v € p. The non-empty, finite, independent set p* = p U {v} properly
contains p. Furthermore,

maxp* =v>1+maxp > 1+ |p| = |p*|
We conclude that p* € A. In particular, A has no maximal elements.

If E is a non-empty, finite chain of elements of A, then E has a maximum element. Since
A has no maximal elements, there exists b € A that properly contains max E. The set

E U {b} is a chain of elements of A that properly contains E. Since A is non-empty and
singleton subsets of A are chains, the empty set is not a maximal chain in A either.
Therefore, all maximal chains of elements of A are infinite.

The Hausdorff maximal principle implies the existence of a maximal chain 4* of
elements of A. Since A* is a chain of finite sets, no two distinct elements of A* have the
same cardinality. Because A™ is infinite,

sup|a| = oo.
acA*

We conclude from max a > |a| for all a € A that

sup(maxa) = oo,
a€eA*

i.e.,, supU(A*) = oo. The unbounded independent set U(A*) can be extended to a
transversal of ~, which is also unbounded. O
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Exponential example. Let x, € [1,e2] and let f: [1,x,] = R be ©(1) for conformity
with Leighton’s example and our definition of a divide-and-conquer recurrence. Lemma
30.2 implies there exists a solution T of the recurrence

f (), forl <x <x,

TG =127 (f +

> logx)' for x > x,

that agrees with e* on some unbounded set. In particular,

T(x) # xlog®® x.

Lemma 30.3. Suppose x, > e? and f:[1,x,] = R* is ©(1). There exists exactly one
function T: [1,00) — R such that T|; ,,; = f and

X

TG =21 (2 + loj;x)

for all x > x,. Furthermore, there exists an asymptotically positive, real-valued function
A:(1,0)\{e} = R such that 1 is ©(1) and

T(x) = xlog"™® x
for all x € (1, )\{e}.

Proof. Lemma 30.1(4) implies the divide-and-conquer recurrence (proper by Lemma
30.1(1)) is finitely recursive. Corollary 8.5 implies the recurrences has a unique solution,
T, which is positive.

Since T is positive, we may define 1: (1,)\{e} - R by

log(T
200y = BT/
loglog x
so that
T(x) = xlog"™® x

for all x € (1, )\{e}. We will show that A is asymptotically positive and A(x) = 0(1).
Let x > xg, so x > e2. Lemma 30.1(3) implies B*(x) > e? for each non-negative
integer k. (As before, the exponent k refers to composition of functions, not
exponentiation of function values, and B is the identity map on (1, 0).) In particular,
B*(x) is in the domain of A for all such k. Furthermore,

A(x)loglogx = log (M) = log <ZB(X) log’l(B(x)) B(x))

X
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2
= log <1 + @) + A(B(x)) loglog B(x)

n-1

2
= 2(B"(x)) loglog B™ 21 (1—)
A(B"(x))loglog B"(x) + ) log(1+mirs
k=0
where n > 0 is the depth of recursion at x, i.e., B™(x) < x, and B*(x) > x, for all
k € {0, ...,n — 1}. Observe that B"(x) € (e?, x,].

Since f is ©(1) and T agrees with f on (e?, x,], there exist z;,z, € R* such that
z; < T(v) < z, forallv € (€2, x,],50 2z, /xy < T(v)/v < z,/e? and

a<log<%v)> <b

for each such v where a = log(z;/x,) and b = log(z,/e?). Allv € (e?, x,] are in the
domain of A with a < A(v) loglogv < b. In particular,

a< A(B”(x)) loglog B™(x) < b.
For each integer k > 0, the quantity log B*(x) is positive (indeed, log B¥(x) > 2), so

2 2
I (1 ) .
og(1+ log B*(x) < log B¥(x)

Thus

n—-1

a+Zlog< Bk(x)) < Alx)loglogx < b+22m

(5 iogm)
‘=2 logx,)

M_l 1 (11)

w 2 logw \2'c

Let

soc > 1. Then

for allw > x,, i.e., cB(w) < w < 2B(w). We conclude from B’ (x) > x, for all
j €1{0,..,n— 1} that

¢k < " ke? < kB (x) < B¥(x) < 2" kB (x) < 2" Fx,

for 0 < k < n. Therefore,
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z Z Z 1 1_|_j”dt _ 1+logn
_logBk(x) (n—k)logc klogc — logc . t)  logc

and

kZO log( log Bk(x)) Z log( log(Z” kx )) Z 10g< log(kao))
- ;log< klog2 + logxo) Z 10g< (k + 1? logxo)

n+1 n+1

2108+ ) > 2. (g ~ 7
= 08 T 12 002 )
) klogx, i klogx, k?log?x,

2 n+2 dt 2 n+1 dt
> —_— R
long_L t log? xo-[1 t?

_ 2log(n+2)—2log2 2 ( 1 )
B log x, log? x,, n+1
2logn — 2log2 2

log x, log? x,

Recall that ¢™ < x < 2™x,, which implies

log x — log x,, log x

log 2 n logc’
Therefore,

log x
1+ log (10§ c)

logc

(1 + loglog x — loglog C)

=b+2
logc

A(x)loglogx < b+ 2

The assumption x > x, > e? implies loglog x > 0, so

2 blogc + 2 —2loglogc
= 1).
A0 < logc + (logc)(loglog x) o)

Furthermore,
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2log (%) — 2log 2

log x, ~ log? x,

A(x)loglogx > a + = 0O(loglogx),

which implies A is asymptotically positive, and A(x) = Q(1). Therefore, A(x) = ©(1). O
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Bounded gap ratios will play a role in our treatment of almost increasing functions.

Definition. A set S of positive real numbers has bounded gap ratios if there exists a real
number a > 1 such that S N [x, ax] is non-empty for all x € (inf S, sup S).

The definition above is satisfied for all @ > 1 when (inf S, sup S) is contained in S. In
particular, the definition is vacuously satisfied when (inf S, sup S) is empty, i.e., S is
either empty or a singleton:

(inf @, sup @) = (+00, —0) = @
and
(infS,supS) = (y,y) =0

when S has a single element y.

We require a # 1 for convenience in the next section. In particular, the dynamic range
notation ¥, is defined when a > 1.

Lemma 31.1. If S is a set of real numbers with a positive lower bound and finite upper
bound, then S has bounded gap ratios.

Proof. Since the empty set and positive singletons have bounded gap ratios, we may
assume S is neither empty nor a singleton. Define the real number

_supS
~ infS’

soa > 1. If x € (infS,sup S), then
infS <x <supS < ax,

so S N [x, ax] contains S N (x, sup S), which is non-empty. Therefore, S has bounded
gap ratios. O
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Positive bounded set that does not have bounded gap ratios. Define a positive,
decreasing sequence ty, ty, ta, ... by

J— —-e
t,=e"°,
SO
t
lim — = lim e(en+1‘en) = 00,

The positive set
S ={t,:n €N}
is bounded because
maxS =t, =1/e < oo.

Let @ > 1. There exists m € N such that

SO
tm
tm+1 < ?

Let x € (tyy41,tm/@). Then
gy <X < ax < tp,

which implies x € (infS,sup S) and S N [x, ax] = @. Therefore, S does not have
bounded gap ratios. Lemma 31.1 is inapplicable to S because infS = 0.

Lemma 31.2. If A and B are sets of positive real numbers with bounded gap ratios, then
A U B has bounded gap ratios.

Proof. Let C = AU B. We may assume C € {4, B}, so A and B are non-empty.
Positivity and non-emptiness of A and B imply inf 4 and inf B are non-negative real
numbers and sup 4, sup B € (0, ]. Without loss of generality, we may choose notation
so that inf A < inf B.

For each set S of real numbers, define the open interval S* = (inf S, sup S). Define

M = C* N [supA,infB].
Letw € C*, so

inf A = min{infA,inf B} = infC < w < sup C = max{sup 4, sup B}.
Ifw < supA, then w € A*. Suppose w = sup 4, so sup C = sup B and w < sup B; if
w > infB, thenw € B*;if w < infB, then w € M. We conclude that A*UB* UM
contains C*. (The reverse containment is also true, so C* = A* U B* U M.)

If M is non-empty, then either sup A < inf B or

supA =infB < supC.
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Therefore, sup A and inf B are positive real numbers when M is non-empty. Define a

real number y > 1 by
inf B
sup 4

y=2

if M is non-empty and y = 2 if M is empty. Observe that z < infB < yz forall z € M,
SO

Bnlzyz]+ 0
for all such z.

By hypothesis, there exist real numbers @ > 1 and 8 > 1 such that A N [x, ax] is non-
empty for all x € A* and B N [y, By] is non-empty for all y € B*. Let A = max{a, 8,y},
so A > 1is areal number. Supposet € C*. If t € A*, then

®#An|[tat] €C Nt At].
If instead t € B*, then
® + Bn|t,pt] <€ Cnlt,At].

IftéA"and, t € B*thent € M, so
@ + B n[t,yt] € C n[t,At].

Therefore, C has bounded gap ratios. O

Of course, Lemma 31.2 can be easily extended by induction to finite unions of sets with
bounded gap ratios. However, we have no need for such a result.

Lemma 31.3. If R is a semi-divide-and-conquer recurrence with low noise, then the
recursion set of R has bounded gap ratios.

Proof. Let D be the domain of R, so D is a set of real numbers. Let I be the recursion set
of R, so I is a non-empty upper subset of D with a positive lower bound. By Lemma
31.1, we may assume sup [ = oo,

Lemma 9.8 implies there exists a non-empty upper subset J of I and real numbers A and u
with A > p > 1 such that x /A1 < r(x) < x/u for all x € J and each dependency r of R.
(In the notation of Lemma 9.8, A = 1/a and u = 1/.) Non-emptiness of | implies

inf] < oo, Furthermore, inf]/ > infl > 0 and supJ = sup/, i.e., supJ = . Observe
that J is an upper subset of D because J is an upper subset of the upper subset I of D.

Let t € (inf], ), so

D N [t,o) =] N|[t, o)+ Q.
We conclude from
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(ee]

[t 00) = U[,v’t,,v'“t)
j=0
that
{j € N:Dn [Vt V+1t) # ¢}

is a non-empty set of non-negative integers and therefore has a least element m. Observe
that

[Amt,ﬂm-"lt) c [Amt, ) = U[Amﬂjt;lmﬂj"-lt),
j=0
SO
{j EN:Dn[Amuit, Ampitit) + ¢}

is a non-empty set of non-negative integers and therefore has a least element n. Then

D N [A™t, A™u"t) = @
and there exists
u € D N [A™ut, Amu"t1e).
Observe that
ueDN[t,o)C]Cl.

Let s be a dependency of R, so domain(s) = I. In particular, u € domain(s).
Furthermore, s(u) € D and

m-—1 m-1,n u u m,n
ATt < A utSZ<dw<;<lut

We conclude from s(u) < A™u™t and

D N [A™t, A™u"t) = @
that s(u) < A™t, so
s(u) € D N [AM 1, A™t),

which implies m — 1 € N. We conclude from m € N that m = 0. The definition of m
implies

D n [t At) + @,
1.e.

J N[t At] # @.
Therefore, J has bounded gap ratios.
The set I\J has inf[ as a positive lower bound and is bounded above by the real number

inf/. Lemma 31.1 implies I'\/ has bounded gap ratios. Lemma 31.2 implies J U (I\])
has bounded gap ratios, i.e., I has bounded gap ratios as required. O
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32. Almost Increasing Functions

The admittedly poor terminology defined below is nonstandard.

Definition. A real-valued function f on a set S of real numbers is almost increasing if
there exists a positive real number ¢ such that f(x) < cf(y) forall x,y € S with x < y.

For example, a monotonically increasing real-valued function on a set S of real numbers
is almost increasing with ¢ = 1. The restriction of an almost increasing function to a
subset of its domain is also almost increasing. The empty function vacuously satisfies the
definition.

We start with a simple observation:

Lemma 32.1. If f is a positive, almost increasing, real-valued function on a set S of real
numbers with sup § = oo, then f = Q(1).

Proof. The set S 1s non-empty because sup S # —oo. Letz € S. There exists a real
number ¢ > 0 such that f(z) < ¢f(x) forall x € S N (z,00),s0 f(x) = f(z)/c > 0 for
all such x. Then f = Q(1) because sup S = oco. O

Lemma 32.2. Let I be a positive, unbounded set (of real numbers) with bounded gap
ratios. Suppose g is a real-valued function on I, and G is a polynomial-growth extension
of g to [inf I, ). If g is almost increasing, then G is almost increasing.

Proof. The set I is non-empty because [ is unbounded. Let x, = inf/, so x, < oo.
Lemma 2.2(1) and polynomial growth of G imply [x,, ) is a positive set, i.e., x, > 0, so
X, 1s a positive real number. Finiteness of x, and unboundedness of I imply sup I = oo,
By definition of bounded gap ratios, there exists a real number a > 1 such that I N [¢t, at]
is non-empty for all t € (xy, ©). The set I N [x,, ax,] is also non-empty since x, = inf[
and axy > x,.
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32. Almost Increasing Functions

Lemma 2.7 implies G is either positive or identically zero. If G is identically zero, then G
is almost increasing, so we may assume G is positive and W, (G) is defined. Lemmas
2.10(2) and 2.16 imply 1 < W, (G) < oo, so W, (G) is a positive real number.

By definition of an almost increasing function, there exists a positive real number ¢ such
that g(u) < cg(v) for all with u, v € I with u < v. Define

k = max{¥,(G), cP2(G)},
so k is a positive real number.
Let x € [xy, ) and y € (x, ). If y € [x, ax], then Lemma 2.10(4) implies
G(x) <P (G)G(Y) < kG(y).

Suppose instead that y & [x, ax]. Theny > ax. There existw € I N [x, ax] and
z €1 N[y, ay]. Observe thatw < z, so g(w) < cg(2), i.e., G(w) < cG(z), which
combines with Lemma 2.10(4) to imply

G(x) S Y, (G)GW) < c¥,(G)G(2) < cW2(G)G(Y) < kG(y).
Therefore, G is almost increasing. O

Of course, Lemma 2.2(2) implies the function g of Lemma 32.2 also has polynomial
growth.
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33. Generalizations of the Master Theorem

In this section, we identify some circumstances under which the following assertions are
satisfied by a divide-and-conquer recurrence with incremental cost g, Akra-Bazzi
exponent p, and solution T

(1) If g(x) = O(xP~¢) for some € > 0, then T(x) = O(xP).
(2) If g(x) = O(xP), then T (x) = O(xP log x).
(3) g(x) = Q(xP*%) for some &€ > 0, then T (x) = G)(g(x)).

The Master Theorem contains a similar list of three assertions and is applicable to a very
narrow class of recurrences. Our Theorem 33.1 establishes validity of (1) and (2) under
much more general conditions. Theorem 33.5 does the same for (3). The combination of
those two theorems is a generalization of the Master Theorem. Corollaries 33.2 and 33.6
are interpretations for recurrences with recursion sets that contain only integers. They
form a simpler generalization of the Master Theorem.

Theorem 33.7 is a convenient variation on (3) for admissible recurrences (regardless of
whether they are proper). Corollary 33.8 is a simple interpretation for recurrences with
recursion sets that contain only integers. These two propositions are not direct
generalizations of the corresponding assertion of the Master Theorem.

Unbounded recursion sets. Suppose T is a solution of a semi-divide-and-conquer
recurrence R with domain D, an unbounded recursion set /, and incremental cost g. The
sets D and I are the domains of T and g respectively. By definition, I is a non-empty
upper subset of D with a positive lower bound, so unboundedness of I implies

supD = supl = oo.
Then asymptotic relationships are definable for the non-negative function g. If T is

asymptotically non-negative, then asymptotic relationships are also definable for T
according to our convention.
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33. Generalizations of the Master Theorem

Theorem 33.1. Let R be a divide-and-conquer recurrence with incremental cost g and an
unbounded recursion set. Suppose R has low noise and satisfies the bounded depth
condition. Assume g is bounded on bounded sets. Let T be the solution of R and let p be
the Akra-Bazzi exponent.

(1) If g(x) = O(xP~¢) for some € > 0, then T(x) = O(xP).
(2) If g(x) = O(xP), then T (x) = O(xP log x).

Proof. Corollary 8.5 implies R has a unique solution T as implicitly claimed.
Furthermore, T is positive. Let I be the recursion set of R and let x, = inf/, so x, > 0.
For each non-negative real-valued function y on I, let

S)/ = (D, I, ay, ..., dg, bl’ ...,bk,f, Y, hl' ""h‘k)
where
R = (D, I, aq, ...,ak, bl’ ...,bk,f,g, h‘ll ""h’k)'

i.e., S, is the divide-and-conquer recurrence that is identical to R, except perhaps for the
incremental cost, which is y. (For example, S; = R.) The recurrence S, also has low
noise, satisfies the bounded depth condition, and has Akra-Bazzi exponent p. Corollary
8.5 implies S, has a unique solution U,,, which is positive.

Suppose g(x) = 0(xP~¢) for some € > 0 and define A: 1 - R by A(x) = xP~¢. The
locally Riemann integrable function x + xP~¢ on the positive interval [x,, ) has
polynomial growth by Lemma 4.1(2) and is therefore a tame extension of A. Thus S; is
admissible. Corollary 20.12 implies

*yupP-¢ 1
Up(x) =0 xP (1 + j ) du) =0 (xp (1 + ;(x(;‘g — x‘£)>> = 0(xP).

X0

Lemma 29.1(1) implies T (x) = O(U,l(x)), so T(x) = 0(xP). Corollary 29.3 implies
T(x) = Q(xP). Therefore, T(x) = O(xP) as claimed by (1).

Now suppose instead that g(x) = ©(xP) and define u: I = R by u(x) = xP. The locally
Riemann integrable function x ~ xP on the positive interval [x,, ) has polynomial
growth by Lemma 4.1(2) and is therefore a tame extension of u. Thus §, is admissible.
Corollary 20.12 implies

X P
Uy(x) =0 xP (1 +] il du) = G)(xp(l + logx — logxo)) = O(xP? log x).
X

0

Lemma 29.1(3) implies T(x) = 0 (U, (x) ), so T(x) = O(xP log x) as claimed by (2). O
u
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33. Generalizations of the Master Theorem

Corollary 33.2. Let R be a divide-and-conquer recurrence with low noise and an
unbounded recursion set that contains only integers. Let T be the solution of R, let g be
the incremental cost, and let p be the Akra-Bazzi exponent.

(1) If g(n) = 0(nP~%) for some € > 0, then T(n) = O(nP).
(2) If g(n) = ©(nP), then T(n) = O(n? logn).

Proof. Lemma 21.1 implies R satisfies the bounded depth condition and has a unique
solution T as implicitly claimed. The domain of g is the recursion set I, which contains
only integers. If S is a bounded subset of I, then S is finite, so g(S) is a finite set of real
numbers and is therefore bounded, i.e., g is bounded on bounded sets. The proposition
follows from Theorem 33.1. 0

Lemma 33.3. If T is a non-negative solution of a semi-divide-and-conquer recurrence R
with an unbounded recursion set I, then

T(x) = Q(g(x))
where g is the incremental cost of R.

Proof. Letry, ..., 1 be the dependencies of R. There exist positive real numbers
a, ..., ay such that

k
T() = g() + ) al ()

for each element x of I. Non-negativity of T and ay, ..., a; imply T(x) = g(x) for all
such x. Then T (x) = Q(g(x)) since g is non-negative and [ is an unbounded upper
subset of the domain of T'. 0

Corollary 33.4. If T is the solution of a finitely recursive semi-divide-and-conquer
recurrence R with an unbounded recursion set, then T (x) = Q( g (x)) where g is the
incremental cost of R.

Proof. Corollary 8.5 implies R has a unique solution T as implicitly claimed.
Furthermore, T is positive. The proposition follows from Lemma 33.3. O

Upper subsets. The upper-subset property is transitive: If A, B, and C are sets of real
numbers such that A is an upper subset of B and B is an upper subset of C, then A is an

upper subset of C.

If E is an upper subset of a set F of real numbers, and S isaset with E € S € F, then E
is an upper subset of S.
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33. Generalizations of the Master Theorem

If X and Y are upper subsets of a set W of real numbers, then either X € Y or Y € X, so
X UY and X NY are elements of {X,Y}. In particular, X UY and X N Y are upper subsets
of W. Furthermore, X NY is an upper subset of X and Y, which are upper subsets of

X UY. The set X NY is non-empty if X and Y are non-empty.

If I is a positive, unbounded set of real numbers, then each non-empty upper subset of /
is unbounded (and positive). Each intersection of I with a positive unbounded interval is
a non-empty upper subset of /. Furthermore, if H is a non-empty upper subset of I, then
H is the intersection of I with the positive unbounded interval

(infH,) U (H n{infH}),
which is either (inf H, o) or [inf H, ).

All of the aforementioned assertions about upper subsets can be easily verified by the
reader.

Theorem 33.5. Let
R = (D, 1, aq, ...,ak, bl' ...,bk,f,g, h’l’ ""h’k)

be a divide-and-conquer recurrence with unbounded recursion set, I. Assume R satisfies
the bounded depth condition and either

(1) The incremental cost, g, is locally ©(1), or

(2) R has low noise, g is bounded on bounded sets, and g is asymptotically locally
0(1).

Let T be the solution of R. Suppose

g(x) = Q(xP*)

for some € > 0 where p is the Akra-Bazzi exponent of R. Let 1y, ..., 73 be the
dependencies of R. If there exists a non-empty upper subset J of I such that r;(t) € I for
allt € Jand all i € {1, ..., k}, and if there exists a real number ¢ < 1 such that

k

> ag(n®) < cg®

i=1

T(x) = G)(g(x)).

forall t € J, then

Proof. Each of conditions (1) and (2) imply g is bounded on bounded sets. Corollary 9.4
implies R has a unique solution T (as implicitly claimed), which is locally ©(1).
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33. Generalizations of the Master Theorem

We claim there exists a non-empty upper subset I of I and a non-empty upper subset J*
of I* N ] such that the restriction of g to I* is locally ©(1), and r;(v) € I* forall v € J*
andalli € {1, ..., k}.

Proof of claim: If condition (1) is satisfied, then the claim is satisfied with I* = I and

J* =]. Now suppose instead that (2) is satisfied: There exists a non-empty upper subset
E of I such that the restriction of g to E is locally ©(1). Lemma 9.8 and low noise of R
imply the existence of a non-empty upper subset H of [ and a real number 0 <y < 1
such that r;(w) > yw for all w € H and each index i. Let

I"=EnNH
and

Iz I*n]n<infl* )
= Iml
14
so J* is contained in I*, H, J, and
(inf]* )
’m'
14

The set I is a non-empty upper subset of I because E and H are non-empty upper subsets
of I. Similarly, I* N J is a non-empty upper subset of the positive, unbounded set I. Then
I* N ] is a positive, unbounded set, which implies J/* is a non-empty upper subset of

I" N J. The restriction of g to I* is locally ©(1) because I* is contained in E.
Containment of J* in J and H implies r;(v) € I and

r;(v) > yv =y -inf]* > infI”

forallv € J*and alli € {1, ...,k}. Thenr;(v) € I* for each such v and i since I* is an
upper subset of I. The claim is proved.

The sets [* is an upper subset of D because I* is an upper subset of I, which is an upper
subset of D. Asymptotic behavior of T is equivalent to asymptotic behavior of the
restriction of T to I*.

The set /* is an upper subset of [* because J* is an upper subset of I* N J, which is an
upper subset of I*. The set [*\/* is bounded because

inf(I*\J*) = inf(I*) =infI > 0
and
sup(I*\J*) < inf]* < oo,

Then g and T are O(1) on I*\J*. In particular, there exists positive real number a and
such that g(y) > a¢ and T(y) < B forall y € I*\J*. Then

B
T(y) < Eg(y)
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33. Generalizations of the Master Theorem

for all such y. Define the positive real number

1
A= max{é,—}.
a'l-c

Let d be the depth-of-recursion function for R relative to D\J*. Observe that J* € [* C I,
so J* € I, which implies D\I € D\J*. Then Lemma 8.3 and finite recursion of R relative
to D\I imply finite recursion of R relative to D\J*. Define

A={n€eN:T(u) < Ag(u) forall u € I'" with d(u) < n}.

If s € I* with d(s) = 0, then s € I*\J*, so

T(s) < gg(s) < Ag(s).

Therefore, 0 € A. Let m € A, and suppose z € I* with d(z) < m + 1, so either
d(z) <mord(z) =m+ 1. Ifd(z) < m, thenT(z) < Ag(z). If d(z) = m + 1, then
d(z) > 0,s0z € J*. Thenr;(z) € I* and d(ri(z)) <mforalli €{1,...,k},so

T(ri (z)) < Ag (ri (z))

for each such i. Furthermore, z € | because z € /* € J. Non-negativity of aq, ..., ax
(indeed, they are positive) implies

k k

T(z) = z aiT(ri(z)) +g(z) < AZ aig(ri(z)) + g(z) < (Ac+ 1)g(2).

Recall that A > 1/(1 — ¢), so A = Ac + 1. Non-negativity of g(z) implies

T(z) < Ag(2).

Therefore, m + 1 € A. By induction, A = N, i.e., T(u) < Ag(u) forallu € I*. In
particular, T(x) = O(g(x)). Lemma 33.3 (or Corollary 33.4) implies T(x) = Q(g(x)).
Therefore, T(x) = G)(g(x)). O

Corollary 33.6. Let
R = (D, 1, ay, ..., Ag, bl' ...,bk,f,g, h’l’ ""h’k)

be a divide-and-conquer recurrence with an unbounded recursion set I that contains only
integers. Assume either R has low noise or the incremental cost, g, is positive. Let T be
the solution of R. Suppose

g(n) = Q(nP*e)
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33. Generalizations of the Master Theorem

for some € > 0 where p is the Akra-Bazzi exponent of R. Let ry, ..., 73 be the
dependencies of R. If there exists a non-empty upper subset J of I such that r;(m) € I for
allm € Jand all i € {1, ..., k}, and if there exists a real number ¢ < 1 such that

k
> ag(nm) < cgm)

i=1
for all such m, then

T(n) = 0(g(n)).

Proof. Lemma 21.1 implies the recurrence satisfies the bounded depth condition and has
a unique solution T as implicitly claimed.

The asymptotic relationship
g(n) = QnP*e)

implies g is asymptotically positive.

Each bounded subset S of I is finite, so g(S) is a finite set of real numbers for each such
S. Therefore, g is bounded on bounded sets. If the restriction of g to a bounded subset X
of I is positive, then inf g(X) > 0, so g is ©(1) on X. Asymptotic positivity of g implies
g is asymptotically locally ©(1). If g is positive, then g is locally O(1).

The proposition follows from Theorem 33.5. O

Theorem 33.7. Suppose T is a locally ©@(1) solution of an admissible recurrence R with
an unbounded recursion set. Let g be the incremental cost of R, and let p be the Akra-
Bazzi exponent. If g is positive and g(x)/xP*¢ is almost increasing for some € > 0,

then T(x) = @(g(x)).

Proof. By definition of an admissible recurrence, R has low noise. Lemma 31.3 implies
I has bounded gap ratios where [ is the recursion set of R (and domain of g).

Define x, = infl, so 0 < x, < oo by definition of a semi-divide-and-conquer recurrence.
Unboundedness of I implies sup / = co. Admissibility of R implies g has a tame
extension H. The domain of H is an interval containing I, so domain(H) contains

(x9, ). Let H* be the restriction of H to

(x0,0) U (I N {xo}),
so the domain of H* also contains /. The function H* is an extension of g.
Lemma 10.1(2) implies H* is also tame. Lemma 10.5 implies H* can be extended to a

tame function G on [x,, ). Observe that G is also an extension of g. (None of the
aforementioned extensions are necessarily proper.) Lemma 2.7 implies G is either
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33. Generalizations of the Master Theorem

positive or identically zero. Positivity of g and non-emptiness of the domain, I, of g
implies G is positive.

Define a positive real-valued function F on [x,, ) by F(x) = G(x)/xP*¢, so F has
polynomial growth by Lemma 4.1(2) and Corollary 4.4. The function F is an extension
of the function x — g(x)/xP*€ on I, so Lemma 32.2 implies F is almost increasing.
There exists a positive real number ¢ such that F(y) < cF(z) for all y, z € [x,, ) with
y < z.

Theorem 20.11 implies

T(x) =0|x? (1 + jx iglg du) =0 xP (1 + ij(u)u""‘1 du) .

Xo 0

Observe that

ij(u)u‘E‘1 du < cF(x) jxue‘l du = cFix) (x® —x§) = O(F(x)x?),

0
SO

T(x) = O(xp(l + F(x)xs)).
Furthermore,

F(xg)x§
F(x)x8>(+)o>0

for all x > x;, so F(x)x® = Q(1). Therefore,

T(x) = O(F(x)xP*) = 0(G(x)),

O

ie.,T(x) = O(g(x)). Lemma 33.3 implies T'(x) = Q(g(x)), soT(x) = G)(g(x)).

Corollary 33.8. Suppose T is the solution of a divide-and-conquer recurrence R with
low noise and an unbounded recursion set containing only integers. Let g be the
incremental cost of R, and let p be the Akra-Bazzi exponent. Suppose g is positive and
has polynomial growth. If g(n)/nP*¢ is almost increasing for some & > 0, then

T(n) = 0(g(n)).

Proof. Theorem 21.2 implies R is admissible and has a unique solution T as implicitly
claimed. Furthermore, T satisfies the strong Akra-Bazzi condition relative to R and each
tame extension of g. Theorem 20.11 implies T is locally ©(1). The proposition follows
from Theorem 33.7. O
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34. Master Theorem Caveats

Section 4.5 of [CLRS] begins with:
“The master method provides a ... method for solving recurrences of the form
T(n) = aT(n/b) + f(n)
where ... f(n) is an asymptotically positive function.”

On the next page, [CLRS] says “The master method depends on the following theorem”
then states the following proposition:

Master Theorem. Let a > 1 and b > 1 be constants, let f(n) be a function, and let
T (n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n),

where we interpret n/b to be mean either |n/b] or [n/b]. Then T (n) has the following
asymptotic bounds:

1. Iff(n) = O(nlogb a‘e) for some constant € > 0, then T(n) = @(nlogb ‘1).
2. If f(n) = ©(n'°8r @), then T(n) = O(n'°8»%1gn).
3. If f(n) = Q(nlogb a+€) for some constant € > 0, and if af (n/b) < cf(n) for

some constant ¢ < 1 and all sufficiently large n, then T(n) = G)( f (n)).

Here Ig n represents the binary logarithm, log, n, which is of course @(logn).
Obvious unstated assumptions of the Master Theorem (especially in the context of

other discussions of recurrences in [CLRS]). There exists a non-empty, proper, upper
subset I of N such that n/b < n and
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34. Master Theorem Caveats

T(n) = aT(n/b) + f(n)

for all n € I where n/b is an abuse of notation that represents either [n/b] or [n/b] as in
the Master Theorem. For example, if the recurrence is of the form

T(n) = aT([n/b]) + f(n),
then min [ must be large enough that
(minl)/b < (min[) — 1.

The non-empty, lower subset N\I of N is the domain of the base case, which is a real
valued function. The domain of f contains I. Let f* be the restriction of f to I. (It
would be convenient for the Master Theorem to specify domain(f) = I, i.e., f = f*.)
The function f* is real-valued. With respect to part (iii) of the Master Theorem, we
observe that for sufficiently large integer n, we have n and n/b (same abuse of notation)
contained in I, which is contained in the domain of f.

Caveats. The Master Theorem should explicitly require that f* is a non-negative
function and the base case is a positive function. As we shall see, these assumptions are
almost certainly intended by [CLRS] even though they are unstated. At the end of this
section, we discuss loosening these requirements.

Our Proof of the Master Theorem. Assuming the caveats and obvious unstated
assumptions listed above, recurrences described by the Master Theorem satisfy our
definition of a divide-and-conquer recurrence. With the same qualification, the Master
Theorem is an immediate corollary of Corollaries 33.2 and 33.6. Indeed, we recommend
adoption of those propositions for general use instead of the Master Theorem, which we
consider obsolete.

Non-negative f*. The statement of the Master Theorem describes f as a function but
mentions no other properties of f, not even its domain or whether f is real-valued. The
prelude to the Master Theorem lists only one property of f: asymptotic positivity.
However, the supplied proof explicitly assumes non-negativity of f in the statements of
Lemmas 4.2, 4.3, and 4.4.

Positive base case. The statements of Lemmas 4.2 and 4.4 describe the base case as

©(1) as is common elsewhere in [CLRS]. The base case is also represented as ©(1) in

figures 4.7 and 4.8.

The subsection Technicalities in Recurrences [CLRS, p. 67] includes the statement
“Boundary conditions represent another class of details that we typically ignore.

... recurrences that arise from the running time of algorithms generally have
T(n) = ©(1) for sufficiently small n.”
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34. Master Theorem Caveats

According to our definition of ©(1) on a set of real numbers with a finite upper bound,
“T(n) = ©(1) for sufficiently small n” is equivalent to positivity of T(n) for sufficiently
small n. (We assume n is a non-negative integer as in the Master Theorem and
elsewhere in [CLRS].)

[CLRS, p. 47] indicates their meaning for ©(1) with no mention of positivity:

“We shall often use the notation ©(1) to indicate either a constant or a constant
function...”

References to ©(1) base cases on pages 35 and 67 of [CLRS] also refer to constants
without mention of positivity. However, the supplied proof of the Master Theorem
implicitly assumes the “constant” represented by ©(1) is positive: Figures 4.7 and 4.8
assume
@(1) " nlogb a — @(nlogb a)
and
0(1) * ©(n'osr @) = @(nloer ),

respectively. By definition of ®-notation in Section 3.1 of [CLRS] the expression
@(nlogb a)

represents an asymptotically positive function. Therefore, the constant value represented
by the ©(1) base case must also be positive. The aforementioned definition assumes an
unbounded domain (see the first sentence of Section 3.1 of [CLRS]) and is therefore not
directly applicable to the usage of ©(1) in [CLRS] to describe base cases.

A recurrence that has constant, negative base case and violates conclusion of Master
Theorem. Let f:Z* — {1}. Define T:N — R by

-1, ifn=0
T(n) = {2T([n/2 D+f@m), ifn>0,
1e.,
T(n) =-1

for all n € N. In the notation of the Master Theorem, a = b = 2,solog,a = 1. Lete
be a real number satisfying 0 < € < 1. Observe that 1 — & > 0, and

lim n1—¢
n—-o0o

f(n) =0(n'=*)

= o0,

Then

as required by part 1 of the Master Theorem, but

T(n) #0(n) = @(nlogb a).
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34. Master Theorem Caveats

A recurrence that has f(1) < 0 and violates conclusion of Master Theorem. Let
f:Z* > R be the asymptotically positive function defined by

-3, ifn=1
f(”)_{ 1, ifn>1
Define T: N — R by

1, ifn=0
T() = {2T([n/2 D+f@m), ifn>0,
i.e.
1, ifn=0
T(n) = {—1, ifn > 0.

Remarks from the previous example apply: In the notation of the Master Theorem,
a=D>b =2,s0log, a = 1. Let € be a real number satisfying 0 < € < 1. Observe that
1—¢e>0,and

lim n1~¢ = co.
n—-oo

f(n) =0(n'~*)

Then

as required by part 1 of the Master Theorem, but
T(n) # 0(n) = @(nlogb a).

Loosening the requirements for the base case and f. Corollary 29.6 allows us to
replace positivity of the base case and non-negativity and asymptotic positivity of f with
the requirement that T is asymptotically positive and f is asymptotically non-negative.
(Caution: the notation of Corollary 29.6 conflicts with the notation of the Master
Theorem.) Here we continue to assume the obvious unstated assumptions of the Master
Theorem.

Observe that T is asymptotically positive if the base case is non-negative and f is non-
negative and asymptotically positive.
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35. Applications to Nonhomogeneous Difference Equations

We now obtain an asymptotic formula for solutions of a large class of difference
equations. A change of variables yields admissible recurrences amenable to our main
results.

Theorem 35.1. Let n, and k be integers with k > 0. Define D = Z N [n, — k, ©) and
I = Z N [ng, ). Suppose f: D\I - R and g:I - R with f positive. Let ay, ..., a; be
non-negative real numbers that are not all zero.

LetI* = {e™ : n € I}, and define g*: I* - R by g*(s) = g(logs) for all s € I*. Suppose
g* has polynomial growth. Let C*:[e™, o) — R be a continuous, polynomial-growth
extension of g* (such a C* exists by Lemma 5.1). Define C: [ny, ©) — R by

C(t) = C*(eb) forall t € [ng, ).

There exists exactly one real-valued function T: D — R that satisfies T|p\; = f and

k

T() = Y aT(m=))+g()

j=1
for all n € I. There exist positive real numbers y and § such that
yB(n) < T(n) < §B(n)

B(n) = A" (1 + jn C/Sf) du)

0

for all n € I where

and A is the unique positive root of the polynomial

k
xk — Z ajx*.

j=1

If g(n) = 0(A"/n'*¢) for some € > 0, then T(n) = O(A").
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35. Applications to Nonhomogeneous Difference Equations

Proof. The recurrence is finitely recursive and therefore has a unique solution T by
Lemma 8.2. Let

E={j€Zn|[1k]:a; + 0}.

Lemma 11.1 implies there exists exactly one real number p that satisfies

Z aje” /P =1,

JEE
1e.,

aje” P = 1.

R

Jj=1

The exponential function on R is a bijection onto the set of positive real numbers, so
there exists exactly one real positive number [ that satisfies

k
Z ajl_j = 1.
j=1

Furthermore, [ = e? and [ is the unique positive root of the polynomial

=

=
|

'Mw

8
=

=

o

[

j=

i.e., A = eP. (Existence of exactly one positive root for the polynomial also follows from
Descartes’s rule of signs, which also implies the root is simple. See [Us].)

LetD* ={e":n € D},sol" = D* N [e™,o) and D*\I* = {e™ : n € D\I}. Define
f*:D*\I* = Rby f*(v) = f(logv) for all v € D*\I*. The domain, D\I, of f has finite
cardinality k. Observe that Range(f*) = Range(f) is a positive set, which is finite.
Therefore, f* has a positive lower bound and a finite upper bound.

The function g* is non-negative by Lemma 2.7. Since g(n) = g*(e™) foralln € I, we
conclude that g is also a non-negative function (and is therefore eligible for asymptotic
relationships according to our convention for asymptotic notation). Continuity of C*
implies C* is locally Riemann integrable, so C* is a tame extension of g*.

Let R* be the divide-and-conquer recurrence

f*(x), for x € D*\I*
T"(x) = Z ajT*(e‘jx) + g*(x), forx € I

JEE
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35. Applications to Nonhomogeneous Difference Equations

with domain D*, recursion set [*, base case, f*, incremental cost g*, and dependencies
x — e~ Jx where j varies over the elements of E. The noise terms are identically zero, so
R* has low noise and is therefore admissible. The Akra-Bazzi exponent of R* is p.

The recurrence R* satisfies the bounded depth condition, so Corollary 20.12 implies R*
has a unique solution T*, which satisfies the strong Akra-Bazzi condition relative to R*
and C*. Of course,
T*(x) = T(logx)
for all x € D*, and
T(n) =T"(e")

for alln € D. There exists y, 6 > 0 such that

YA(x) < T*(x) < §A(x)
forall x € I*, i.e.,

yA(e™) < T(n) < §A(e™)
for all n € I where A: I* — R is defined by

* C"(2)
— 4P
Alx) =x (1 +L e dz)

no

A(en) = eMP <1+je C*(Z) dZ)

forall x € I*, i.e.,

o110 SD+1
foralln € I.

Continuity of C* implies continuity of C. Then the function on [n,, ) that maps u to
C(u)/eP" is also continuous, so integration by substitution of u = log z is justified to

obtain
" cr nC
j (2) dz = j _(u) du

Zb+1 pu
emo no e

for all n € I, which combines with A = e? to imply A(e™) = B(n) and
yB(n) < T(n) < 6B(n)
for each such n. (In particular, T(n) = G)(B (n)).)

Now suppose g(n) = 0(A"/n'*#) for some € > 0. By Lemma 2.7, either C* is a
positive function or C* is identically zero. If C* is identically zero, then C is identically
zero and
B(n) = A"
foralln € I, so
T(n) = 0(A").

318



35. Applications to Nonhomogeneous Difference Equations

Therefore, we may assume C* is a positive function, so W,(C*) is defined. Lemmas
2.10(2) and 2.16 imply 1 < W,(C*) < oo. Positivity of C* implies positivity of C.

There exists a positive element m of I and a positive real number L such that
g(n) < L A"/n*¢ for each integer n = m. Define

H =2 max{1,1/1}-¥,(C*)L
and let w € [m, ), so |[w] =m > 1. Sincew € [[w].|w] + 1), we have

eV e [ele’ele+1)_
Lemma 2.10(4) implies
C*(e") < W, (CH)C*(e),
ie.,
Cw) < W (CHC(WD.

Observe the |[w] —w € [—1,0] and

0<w/lw]<(w]+1)/Ilw] <2
SO
AWl 7| w|i+e e (W 1+ H
e = A ([w J) AR

We conclude from C(Jw]) = g(lw]) and |w] = m that

Al s
Cw) = Y.(C)g(w]) < ¥e(C)Li—z < H

1+¢ 1+¢&
[w] w

(so C(x) = 0(A*/x'*¢€)), which combines with non-negativity of C to imply

"C(w) noq H/1 1 H
OSfmTud”S“]muued“:z(ﬁ‘ﬁ)<gme

0<1+m() _[A(— _+jm()u+

u &
- ny A em

and

for each integer n > m. Then

14+ jncgf) du = (1),

which implies
T(n) = 6(A").
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35. Applications to Nonhomogeneous Difference Equations

Corollary 35.2. Let n, and k be positive integers. Define D = Z N [n, — k, ©) and
I = Z N [ny, ). Suppose f: D\I — R is positive and g: I — R has polynomial growth.
Let a4, ..., a; be non-negative real numbers that are not all zero.

There exists exactly one real-valued function T: D — R that satisfies T|p\; = f and

k

T() = Y aT(m=))+g()

j=1

for all n € I. There exist tame extensions of g. Furthermore,

T(n)=0 A"(l+]n0(u)du>

/111

No

for each tame extension G of g where A is the unique positive root of the polynomial
K
xk — Z ajx*.
j=1

If any of the following three conditions is satisfied, then T (n) = 0(A™):

(1) g is identically zero.

2)A>1.

(3) A =1and g(n) = 0(1/n'*) for some £ > 0.
Proof. The recurrence is finitely recursive and therefore has a unique solution T by
Lemma 8.2. Lemma 2.7 implies g is non-negative (and is therefore eligible for

asymptotic relationships according to our convention for asymptotic notation).

By Descartes’s rule of signs (see [Us]), there is indeed exactly one positive root, 4, of the
polynomial

=

=
|

'Mw

8
=

=

d

j=1

By Corollary 5.2, there exists a continuous, polynomial-growth function C: [ngy, ©) - R
with C|; = g: Continuity of C implies C is locally Riemann integrable and is therefore a
tame function. In particular, g has at least one tame extension to [n,, ©). Let G be any

such extension.
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35. Applications to Nonhomogeneous Difference Equations

LetI* = {e™ : n € I}, and define g*: I* = R by g*(s) = g(logs) for all s € I*. Define
C*:[e™,0) - Rby C*(r) = C(logr) for all r € [e™, ). Observe that C*|;+ = g* and
C(t) = C*(e") forall t € I. The functions g* and C* have polynomial growth by
Lemmas 4.1(3) and 4.6. The function C* is continuous.

Lemmas 2.7 and 2.34 imply g(n) = 0(A"/n1*€) for some & > 0 if (and only if) at least
one of the conditions (1), (2), and (3) is satisfied. (There is no condition listed for 4 < 1
because when A < 1, the relationship g(n) = 0(A"/n'*¢) holds if and only if g is
identically zero, i.e., condition (1) is satisfied—see Lemma 2.34.) In particular, if one of
the conditions (1), (2), and (3) is satisfied, then T(n) = 0(A™) by Theorem 35.1.

By Theorem 35.1, there exist positive real numbers y and § such that
yB(n) < T(n) < 6B(n)

for all n € I where B:1 — R is defined by

B(n) = A" (1 + jn C/Sj) du).

0

In particular, T (n) = G)(B(n)). Define A: I - R by

A(n) = A" (1 + jn G;:) du)

foralln € I. Lemma 2.7 and

G(ng) = g(ng) = C(np)

imply either all of g, G and C are positive function or all of them are identically zero. In
particular, they are all non-negative. If G and C are identically zero, then A = B and
T(n) = G)(A(n)). Therefore, we may assume G and C are positive functions. The
domains of G and C are sets of positive real numbers, so W, (G) and W, (C) are defined.
Lemma 2.10(2) implies W, (G) = 1 and ¥,(C) = 1. Lemma 2.16 implies ¥,(G) < oo
and W, (C) < oo.

Suppose u € [ng, ), and let t = |u/, so

u € [t,t+ 1) c [t,2t] € [ng, ).
Lemma 2.10(4) implies

G(u)
w00 < G(t) < Y,(G)G(w)

C(u)
¥, (C)

and

< C(t) <Y, (O)C(w).

We conclude from
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35. Applications to Nonhomogeneous Difference Equations

GO =g@)=C®)

that
G(u) c(t)
L0090 ~ w0 = (W = %000 = % (OF(O)6w).
Define
___r
MRRTN TN ()
and

B = ¥, (O)¥,(6),
sothat 0 < @ <yand f = 6§ > 0. Then

aG(u) < yC(u) and §C(u) < BG(u).
Therefore,
aA(n) < yB(n) < T(n) < 6B(n) < BA(n)
foralln € I, so

T(n) = 0(A(n)).

Recurrences satisfying either the hypothesis of Theorem 35.1 with ny, > 0 or the
hypothesis of Corollary 35.2 (which implies the hypothesis of Theorem 35.1 with

ny > 0) also satisfy our overly loose definition of a divide-and-conquer recurrence if we
ignore the terms a;(n — j) with a; = 0. Such recurrences are inadmissible because of
their high noise.

Variations on the Fibonacci Numbers. Let g: Z N [3,0) — R be a polynomial-growth
function. Define T: Z* — R by the recurrence

B 1, forne€e{1,2}
T(n) = {T(n —D+Tnm-2)+ g(n), forn > 3.

By Corollary 35.2,

T(n) = 0(p™)
where

1++5

@ 2

is the positive root of the polynomial x? — x — 1, i.e., ¢ is the golden ratio. The other

root is
1-+5
Y = >

~ —0.6.
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35. Applications to Nonhomogeneous Difference Equations

If g is identically zero, then T'(n) is the nth Fibonacci number FE,. The well-known

formula
n __ n
oot
V5
(explained in Section 7) is consistent with F,, = @(¢™) because ¢ > |].

An example from generatingfunctionology. The simple recurrence

T()—{ 1, forn=0
= 2T(n—1)+n—1, forn>0

with domain N has the solution
T(n)=2"'—n-1,

which can be derived via a generating function ([Wilf, pp. 5-7]. The solution can also be
guessed by examining the first few terms of the sequence

T(0),7(1),T(2)..=1,2,512,27,58,121, ...
and proved by induction. Observe that

2" <T(n) <2-2"
foralln € N, so T(n) = 0(2™).

The function T is also the solution of the (equivalent) recurrence

1, forn=0
T(n) = 2, forn=1
2T(n—1)+n-—1, forn > 2.

The incremental cost is the function n = n — 1 on Z N [2, ), which has polynomial
growth by Lemma 4.7. The polynomial x — 2 has the unique root 2, so Corollary 35.2
agrees that T(n) = 0(2").

Example with A = 1 and T(n) = ©(1). Define g: Z N [2,0) - R by

1
gn) =Wr_z'

Lemma 4.1(2) implies g has polynomial growth. Define T: N — R by

1, forn € {0,1}
T(n) =41

1
ET(n—1)+ET(n—2)+g(n), forn = 2.
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35. Applications to Nonhomogeneous Difference Equations

The polynomial

X —gx—5

has positive root A = 1. Observe that
gm) = 1/n'*¢ = 0(1/n'*%)
for e = 1/2. Corollary 35.2 implies T(n) = 0(A"), i.e.,, T(n) = 6(1).

Example with 2 = 1 and T(n) # ©(1). The functions g: Z N [2,0) - R and
G:[2,0) - R defined by

1
gm) =;
foralln € Z N [2,) and
1
G(x) ==
X

for all x € [2, ) have polynomial growth by Lemma 4.1(2). Furthermore, g is the
restriction of G to Z N [2, o), the function G is locally Riemann integrable, and
domain(G) is a positive interval, so G is a tame extension of g. Observe that

gn) # 0(1/n'**)
for all e > 0. Define T: N — R by
1, forn € {0,1}

T(n) = %T(n - 1) +§T(n ~2)+g(m), fornz2.

The polynomial

2 _ N
X T3%73

has the positive root A = 1. Corollary 35.2 implies

T(n) =0[ 1" (1 + jnll/—uudu> = @(1 + jn%du)
so T(n) = 6(logn).

Example with 2 < 1 and T(n) # ©(A™). Let the functions g: Z N [2,0) — R and
G:[2,0) —> R be the identity functions defined by

gn)=n
foralln € Z N [2,) and
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35. Applications to Nonhomogeneous Difference Equations

G(x)=x

for all x € [2,0). The functions g and G have polynomial growth by Lemma 4.1(2). Of
course, G is a tame extension of g. Define T: N — R by

1, forn € {0,1}
T(n) =41 1
() {ZT(n—1)+§T(n—2)+n, forn > 2.
The polynomial
, 1 1
T8

has the positive root A = 1/2. Corollary 35.2 implies

1 n
T(n) =0 ﬁ(”] 2”udu> .
Mo

We conclude from

n 2"(nlog(2) —1) 2™ (n,log(2) —1)
j 2%udu = > - >
- log? 2 log? 2
that
T(n) = 0(n).

Alternatively, we can simply notice and prove by induction that

8
n < T(n) <§n

whenn > 0.

Example with exponential incremental cost. Let /| = Z N [2, ). Define g: I —» R and
C:[2,0) > Rby g(n) = e™ and C(x) = e*. Define T: N — R by

T(n) = { 1, forn € {0,1}
ATm—1)+5T(n—2) +e™, forn > 2.

In the language of Theorem 35.1, I* = {e™:n € Z N [2, )}, the function g* is the

identity function on I*. Let C* be the identity function on [e2, ), so C* is a continuous

extension of g*. The functions g* and C* have polynomial growth by Lemma 4.1(2).

Observe that C(t) = C*(et) forall t € [2, ).

The polynomial
x?—4x -5

has the positive root 5. Theorem 35.1 implies
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35. Applications to Nonhomogeneous Difference Equations
n eu
T(n)=0 5”<1+j adu) :
Mo

Observe that e < 5, so (e/5)™ approaches 0 as n approaches co. Therefore,

[ & 0@

u= = = 0(1),

> log(5)  [ios ()

T(n) = 0(5™).

which implies
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A (topological closure of set A), 81

A(y,n), 69

B(y,n), 69

C (complex numbers), 17

C(y,n), 69

d(x), d(S) (depth of recursion), 114

dg(x), dg(S), (relative depth), 113-114

domain(f), 23

E(x,y), 67

f:A — B (function from A to B), 23-24

f|s (restriction of function to S), 26

f o g (composition of functions), 25

f™ (repeated function composition), 26

f1(S) (preimage of S under f), 25-26

length(I) (length of interval I), 17

N (non-negative integers), 17

P(x,y), 67

R (real numbers), 17

R* (positive real numbers), 17

range(f), 23

X = y (X maps to y), 23

Z (integers), 17

Z* (positive integers), 17

\ (set difference), 22

~ (equivalence relation), 164, 189

A (difference operator), 103

0 (big-theta), 18-19

©(1) on set with finite upper bound,
19-20

A, A4 (dynamic range), 34

O (big-oh), 18-19

Y, (supremum of dynamic ranges), 36

Q1 (big-omega), 18-19

Index
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@ (golden ratio), 97, 322

1 (algebraic conjugate of ¢), 97, 322
¢ (empty set), 22

— (set difference), 22

C (proper subset), 22

C (subset), 22

admissible recurrence, 220
Akra-Bazzi
estimate, 221
exponent, 154
formula, 2-3
strong condition, 221
weak condition, 221
almost increasing function, 302
arithmetic on [0, ], 20-22
asymptotic set relations, 18
containment, 18
equality, 18
asymptotically
locally ©(1), 283
non-negative, 19
positive, 19



base case, 104, 107
big-oh notation, 18—19
big-omega notation, 18—19
big-theta notation, 18-19
bijection, 25
bijective function, 25
binary relation, 23
bounded depth
condition, 124
of recursion, 114
bounded gap ratios, 298

candidate for Leighton’s condition, 27

codomain of function, 24

composition of functions, 25
repeated, 26

dependencies, 104, 107
dependent set relative to ~, 169
depth of recursion, 113-114
difference equations
formula, 316-322
homogeneous linear, 96-103
divide-and-conquer recurrence, 107
integer, 238-239
mock, 107
semi-, 107
domain of function, 23
dynamic range, 34

empty function, 23
extension of a function, 26

Fibonacci numbers, 97-98, 322-323
finitely recursive, 114

function, 23

functional graph, 23

golden ratio, 97, 322
graph, 23

identity map, 26

image of function, 25

image of set under function, 24
incremental cost, 107
independent set relative to ~, 169

Index
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infinitely recursive, 114
initial subset, 22
injection, 25
injective function, 25
interval, 17
degenerate, 17
length of, 27
inverse image, 25-26

Lebesgue’s criterion 18, 140
left shift operator, 96, 98—101
locally Riemann integrable, 18
locally ©(1), 20

asymptotically, 283
lower subset, 22

map or mapping, 23
master theorem, 1, 312
generalizations, 304-311
measure zero, 139
minimum initial subset, 23
mock divide-and-conquer recurrence,
107
modified Leighton hypothesis, 230-231
multi-recurrence, 103—-104

noise terms, 107
Leighton’s noise condition, 219
low noise, 218

polynomial growth, 29
b-polynomial-growth, 28, 42-43
basic examples, 75
composition, 79
dynamic range, 4243
extension, 53, 84-93
Leighton’s polynomial-growth

condition, 27-28, 44
locally ©(1), 49, 53
polynomial bound, 5657
polynomials, 81-82
positive or identically zero, 33
product, 77
quotient, 77
restriction, 30
sum, 77



Index

preimage, 25-26

range of function, 23, 25
ratio condition, 128

strong ratio condition, 128
recursion interval, 107
recursion set, 104, 107
restriction of a function to subset, 26
right shift operator, 96

semi-divide-and-conquer recurrence, 107
domain, 107
improper, 107
proper, 107
singleton, 17
strictly monotonic function, 90
subinterval, 17
proper, 17
surjection, 25
surjective function, 25
tame function, 138
target of function, 24
technical condition, 229

upper subset, 22
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